Desugar.hs 44.8 KB
Newer Older
1
{- |
2
3
4
5
6
  Module      :  $Header$
  Description :  Desugaring Curry Expressions
  Copyright   :  (c) 2001 - 2004 Wolfgang Lux
                                 Martin Engelke
                     2011 - 2015 Björn Peemöller
7
                     2015        Jan Tikovsky
8
9
10
11
12
13
  License     :  OtherLicense

  Maintainer  :  bjp@informatik.uni-kiel.de
  Stability   :  experimental
  Portability :  portable

14
15
  The desugaring pass removes all syntactic sugar from the module.
  In particular, the output of the desugarer will have the following
16
17
  properties.

18
19
20
21
  * No guarded right hand sides occur in equations, pattern declarations,
    and case alternatives. In addition, the declaration lists (`where`-blocks)
    of the right hand sides are empty; local declarations are transformed
    into let expressions.
22
23
24
25
26

  * Patterns in equations and case alternatives are composed only of
    - literals,
    - variables,
    - constructor applications, and
27
    - as patterns applied to literals or constructor applications.
28
29
30
31
32
33

  * Expressions are composed only of
    - literals,
    - variables,
    - constructors,
    - (binary) applications,
34
    - case expressions,
35
    - let expressions, and
36
    - expressions with a type signature.
37
38
39
40
41
42
43
44
45
46
47

  * Applications 'N x' in patterns and expressions, where 'N' is a
    newtype constructor, are replaced by a 'x'. Note that neither the
    newtype declaration itself nor partial applications of newtype
    constructors are changed.
    It were possible to replace partial applications of newtype constructor
    by 'Prelude.id'.
    However, our solution yields a more accurate output when the result
    of a computation includes partial applications.

  * Functional patterns are replaced by variables and are integrated
48
    in a guarded right hand side using the (=:<=) operator.
49

50
51
52
53
54
55
56
57
58
  * Records are transformed into ordinary data types by removing the fields.
    Record construction and pattern matching are represented using solely the
    record constructor. Record selections are represented using selector
    functions which are generated for each record declaration, and record
    updated are represented using case-expressions that perform the update.

  * The type environment will be extended by new function declarations for:
    - Record selections, and
    - Converted lambda expressions.
59
60
61

  As we are going to insert references to real prelude entities,
  all names must be properly qualified before calling this module.
62
-}
63
{-# LANGUAGE CPP #-}
64
65
module Transformations.Desugar (desugar) where

66
#if __GLASGOW_HASKELL__ < 710
67
import           Control.Applicative        ((<$>), (<*>))
68
#endif
69
import           Control.Arrow              (first, second)
70
import           Control.Monad              (mplus)
71
import qualified Control.Monad.State as S   (State, runState, gets, modify)
72
73
import           Data.List                  ((\\), elemIndex, nub, tails)
import           Data.Maybe                 (fromMaybe)
74
75
76
77
78
79
80
import qualified Data.Set            as Set (Set, empty, member, insert)

import Curry.Base.Ident
import Curry.Base.Position hiding (first)
import Curry.Syntax

import Base.Expr
81
import Base.CurryTypes (toType, fromType)
82
import Base.Messages   (internalError)
83
import Base.Types
84
import Base.TypeSubst  (expandAliasType)
85
import Base.Typing
86
import Base.Utils      (mapAccumM, concatMapM)
87
88

import Env.TypeConstructor (TCEnv, TypeInfo (..), qualLookupTC)
89
90
import Env.Value (ValueEnv, ValueInfo (..), bindFun, lookupValue
                 , qualLookupValue, conType)
91

92
93
94
95
96
97
98
99
-- The desugaring phase keeps only the type, function, and value
-- declarations of the module, i.e., type signatures are discarded.
-- While record declarations are transformed into ordinary data/newtype
-- declarations, the remaining type declarations are not desugared.
-- Sicne they cannot occur in local declaration groups, they are filtered
-- out separately. Actually, the transformation is slightly more general than
-- necessary as it allows value declarations at the top-level of a module.

100
101
desugar :: [KnownExtension] -> ValueEnv -> TCEnv -> Module -> (Module, ValueEnv)
desugar xs tyEnv tcEnv (Module ps m es is ds)
102
103
  = (Module ps m es is ds', valueEnv s')
  where (ds', s') = S.runState (desugarModuleDecls ds)
104
                               (DesugarState m xs tcEnv tyEnv 1)
105
106
107
108
109
110
111
112
113

-- ---------------------------------------------------------------------------
-- Desugaring monad and accessor functions
-- ---------------------------------------------------------------------------

-- New identifiers may be introduced while desugaring pattern declarations,
-- case and lambda-expressions, list comprehensions, and record selections
-- and updates. As usual, we use a state monad transformer for generating
-- unique names. In addition, the state is also used for passing through the
114
115
116
117
118
119
120
-- type environment, which must be augmented with the types of these new
-- variables.

data DesugarState = DesugarState
  { moduleIdent :: ModuleIdent      -- read-only
  , extensions  :: [KnownExtension] -- read-only
  , tyConsEnv   :: TCEnv            -- read-only
121
122
  , valueEnv    :: ValueEnv         -- will be extended
  , nextId      :: Integer          -- counter
123
124
125
126
127
128
129
  }

type DsM a = S.State DesugarState a

getModuleIdent :: DsM ModuleIdent
getModuleIdent = S.gets moduleIdent

130
131
checkNegativeLitsExtension :: DsM Bool
checkNegativeLitsExtension = S.gets (\s -> NegativeLiterals `elem` extensions s)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

getTyConsEnv :: DsM TCEnv
getTyConsEnv = S.gets tyConsEnv

getValueEnv :: DsM ValueEnv
getValueEnv = S.gets valueEnv

modifyValueEnv :: (ValueEnv -> ValueEnv) -> DsM ()
modifyValueEnv f = S.modify $ \ s -> s { valueEnv = f $ valueEnv s }

getNextId :: DsM Integer
getNextId = do
  nid <- S.gets nextId
  S.modify $ \ s -> s { nextId = succ nid }
  return nid

-- ---------------------------------------------------------------------------
-- Generation of fresh names
-- ---------------------------------------------------------------------------

152
-- Retrieve the type of a typeable entity
153
getTypeOf :: Typeable t => t -> DsM Type
154
155
getTypeOf t = do
  tyEnv <- getValueEnv
156
  return (typeOf tyEnv t)
157

158
-- Create a fresh identifier using prefix, arity, and type scheme
159
160
161
freshIdent :: String -> Int -> TypeScheme -> DsM Ident
freshIdent prefix arity ty = do
  m <- getModuleIdent
162
  x <- freeIdent
163
164
  modifyValueEnv $ bindFun m x arity ty
  return x
165
  where
166
  -- TODO: This nasty loop is only necessary because a combination of desugaring,
167
168
169
170
171
  -- simplification and a repeated desugaring, as currently needed for
  -- non-linear and functional patterns, may reintroduce identifiers removed
  -- during desugaring. The better solution would be to move the translation
  -- of non-linear and functional pattern into a separate module.
  freeIdent = do
172
    x <- (\n -> mkIdent (prefix ++ show n)) <$> getNextId
173
174
175
176
    tyEnv <- getValueEnv
    case lookupValue x tyEnv of
      [] -> return x
      _  -> freeIdent
177

178
-- Create a fresh variable ident for a given prefix with a monomorphic type
179
180
181
182
freshMonoTypeVar :: Typeable t => String -> t -> DsM Ident
freshMonoTypeVar prefix t = getTypeOf t >>= \ ty ->
  freshIdent prefix (arrowArity ty) (monoType ty)

183
184
185
-- ---------------------------------------------------------------------------
-- Desugaring
-- ---------------------------------------------------------------------------
186
187
188
189
190
191
192

desugarModuleDecls :: [Decl] -> DsM [Decl]
desugarModuleDecls ds = do
  ds'  <- concatMapM dsRecordDecl ds -- convert record decls to data decls
  ds'' <- dsDeclGroup ds'
  return $ filter isTypeDecl ds' ++ ds''

193
194
195
196
197
198
199
200
201
-- -----------------------------------------------------------------------------
-- Desugaring of type declarations: records
-- -----------------------------------------------------------------------------

-- As an extension to the Curry language, the compiler supports Haskell's
-- record syntax, which introduces field labels for data and renaming types.
-- Field labels can be used in constructor declarations, patterns,
-- and expressions. For further convenience, an implicit selector
-- function is introduced for each field label.
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
-- Generate selector functions for record labels and replace record
-- constructor declarations by ordinary constructor declarations.
dsRecordDecl :: Decl -> DsM [Decl]
dsRecordDecl (DataDecl    p tc tvs cs) = do
  m <- getModuleIdent
  let qcs = map (qualifyWith m . constrId) cs
  selFuns <- mapM (genSelFun p qcs) (nub $ concatMap recordLabels cs)
  return $ DataDecl p tc tvs (map unlabelConstr cs) : selFuns
dsRecordDecl (NewtypeDecl p tc tvs nc) = do
  m <- getModuleIdent
  let qc = qualifyWith m (nconstrId nc)
  selFun <- mapM (genSelFun p [qc]) (nrecordLabels nc)
  return $ NewtypeDecl p tc tvs (unlabelNewConstr nc) : selFun
dsRecordDecl d                         = return [d]

-- Generate a selector function for a single record label
genSelFun :: Position -> [QualIdent] -> Ident -> DsM Decl
genSelFun p qcs l = FunctionDecl p l <$> concatMapM (genSelEqn p l) qcs

-- Generate a selector equation for a label and a constructor if the label
-- is applicable, otherwise the empty list is returned.
genSelEqn :: Position -> Ident -> QualIdent -> DsM [Equation]
genSelEqn p l qc = do
  tyEnv <- getValueEnv
  let (ls, ty) = conType qc tyEnv
      (tys, _) = arrowUnapply (instType ty)
  case elemIndex l ls of
    Just n  -> do vs <- mapM (freshMonoTypeVar "_#rec") tys
                  let pat = ConstructorPattern qc (map VariablePattern vs)
                  return [mkEquation p l [pat] (mkVar (vs !! n))]
    Nothing -> return []

-- Remove any labels from a data constructor declaration
unlabelConstr :: ConstrDecl -> ConstrDecl
unlabelConstr (RecordDecl p evs c fs) = ConstrDecl p evs c tys
  where tys = [ty | FieldDecl _ ls ty <- fs, _ <- ls]
unlabelConstr c                       = c

-- Remove any labels from a newtype constructor declaration
unlabelNewConstr :: NewConstrDecl -> NewConstrDecl
unlabelNewConstr (NewRecordDecl p evs nc (_, ty)) = NewConstrDecl p evs nc ty
unlabelNewConstr c                                = c

-- -----------------------------------------------------------------------------
-- Desugaring of value declarations
-- -----------------------------------------------------------------------------

-- Within a declaration group, all type signatures are discarded. First,
-- the patterns occurring in the left hand sides of pattern declarations
-- and external declarations are desugared. Due to lazy patterns, the former
-- may add further declarations to the group that must be desugared as well.
254
dsDeclGroup :: [Decl] -> DsM [Decl]
255
dsDeclGroup ds = concatMapM dsDeclLhs (filter isValueDecl ds) >>= mapM dsDeclRhs
256
257
258

dsDeclLhs :: Decl -> DsM [Decl]
dsDeclLhs (PatternDecl p t rhs) = do
259
  (ds', t') <- dsPat p [] t
260
261
262
263
264
265
266
267
  dss'      <- mapM dsDeclLhs ds'
  return $ PatternDecl p t' rhs : concat dss'
dsDeclLhs (ExternalDecl   p fs) = mapM (genForeignDecl p) fs
dsDeclLhs d                     = return [d]

genForeignDecl :: Position -> Ident -> DsM Decl
genForeignDecl p f = do
  m     <- getModuleIdent
268
  ty    <- fromType <$> (getTypeOf $ Variable $ qual m f)
269
  return $ ForeignDecl p CallConvPrimitive (Just $ idName f) f ty
270
271
272
273
  where
  qual m f'
    | hasGlobalScope f' = qualifyWith m f'
    | otherwise         = qualify f'
274

275
-- TODO: Check if obsolete and remove
276
277
278
279
280
281
282
283
284
-- After desugaring its right hand side, each equation is eta-expanded
-- by adding as many variables as necessary to the argument list and
-- applying the right hand side to those variables (Note: eta-expansion
-- is disabled in the version for PAKCS).
-- Furthermore every occurrence of a record type within the type of a function
-- is simplified to the corresponding type constructor from the record
-- declaration. This is possible because currently records must not be empty
-- and a record label belongs to only one record declaration.

285
-- Desugaring of the right-hand-side of declarations
286
dsDeclRhs :: Decl -> DsM Decl
287
dsDeclRhs (FunctionDecl     p f eqs) = FunctionDecl p f <$> mapM dsEquation eqs
288
dsDeclRhs (PatternDecl      p t rhs) = PatternDecl  p t <$> dsRhs p id rhs
289
290
291
dsDeclRhs (ForeignDecl p cc ie f ty) = return $ ForeignDecl p cc ie' f ty
  where ie' = ie `mplus` Just (idName f)
dsDeclRhs fs@(FreeDecl          _ _) = return fs
292
293
dsDeclRhs _ = error "Desugar.dsDeclRhs: no pattern match"

294
-- Desugaring of an equation
295
296
dsEquation :: Equation -> DsM Equation
dsEquation (Equation p lhs rhs) = do
297
298
299
300
301
302
  (     cs1, ts1) <- dsNonLinearity         ts
  (ds1, cs2, ts2) <- dsFunctionalPatterns p ts1
  (ds2,      ts3) <- mapAccumM (dsPat p) [] ts2
  rhs'            <- dsRhs p (constrain cs2 . constrain cs1)
                             (addDecls (ds1 ++ ds2) rhs)
  return $ Equation p (FunLhs f ts3) rhs'
303
304
  where (f, ts) = flatLhs lhs

305
306
307
308
309
-- Constrain an expression by a list of constraints.
-- @constrain []  e  ==  e@
-- @constrain c_n e  ==  (c_1 & ... & c_n) &> e@
constrain :: [Expression] -> Expression -> Expression
constrain cs e = if null cs then e else foldr1 (&) cs &> e
310
311
312
313
314
315
316
317
318
319
320
321
322
323

-- -----------------------------------------------------------------------------
-- Desugaring of right-hand sides
-- -----------------------------------------------------------------------------

-- A list of boolean guards is expanded into a nested if-then-else
-- expression, whereas a constraint guard is replaced by a case
-- expression. Note that if the guard type is 'Success' only a
-- single guard is allowed for each equation (This change was
-- introduced in version 0.8 of the Curry report.). We check for the
-- type 'Bool' of the guard because the guard's type defaults to
-- 'Success' if it is not restricted by the guard expression.

dsRhs :: Position -> (Expression -> Expression) -> Rhs -> DsM Rhs
324
325
326
327
328
dsRhs p f rhs =     expandRhs prelFailed f rhs
                >>= dsExpr pRhs
                >>= return . simpleRhs pRhs
  where
  pRhs = fromMaybe p (getRhsPosition rhs)
329
330
331
332
333
334
335
336
337
338
339

expandRhs :: Expression -> (Expression -> Expression) -> Rhs -> DsM Expression
expandRhs _  f (SimpleRhs _ e ds) = return $ Let ds (f e)
expandRhs e0 f (GuardedRhs es ds) = (Let ds . f) <$> expandGuards e0 es

expandGuards :: Expression -> [CondExpr] -> DsM Expression
expandGuards e0 es = do
  tyEnv <- getValueEnv
  return $ if boolGuards tyEnv es then foldr mkIfThenElse e0 es else mkCond es
  where
  mkIfThenElse (CondExpr p g e) = IfThenElse (srcRefOf p) g e
340
  mkCond [CondExpr _ g e] = g &> e
341
342
343
344
345
346
347
348
349
350
351
352
  mkCond _                = error "Desugar.expandGuards.mkCond: non-unary list"

boolGuards :: ValueEnv -> [CondExpr] -> Bool
boolGuards _     []                    = False
boolGuards tyEnv (CondExpr _ g _ : es) = not (null es) ||
                                         typeOf tyEnv g == boolType

-- Add additional declarations to a right-hand side
addDecls :: [Decl] -> Rhs -> Rhs
addDecls ds (SimpleRhs p e ds') = SimpleRhs p e (ds ++ ds')
addDecls ds (GuardedRhs es ds') = GuardedRhs es (ds ++ ds')

353
354
355
356
getRhsPosition :: Rhs -> Maybe Position
getRhsPosition (SimpleRhs p _ _) = Just p
getRhsPosition (GuardedRhs _ _)  = Nothing

357
358
359
360
-- -----------------------------------------------------------------------------
-- Desugaring of non-linear patterns
-- -----------------------------------------------------------------------------

361
362
363
364
-- The desugaring traverses a pattern in depth-first order and collects
-- all variables. If it encounters a variable which has been previously
-- introduced, the second occurrence is changed to a fresh variable
-- and a new pair (newvar, oldvar) is saved to generate constraints later.
365
-- Non-linear patterns inside single functional patterns are not desugared,
366
367
368
369
370
371
372
373
374
375
376
377
-- as this special case is handled later.
dsNonLinearity :: [Pattern] -> DsM ([Expression], [Pattern])
dsNonLinearity ts = do
  ((_, cs), ts') <- mapAccumM dsNonLinear (Set.empty, []) ts
  return (reverse cs, ts')

type NonLinearEnv = (Set.Set Ident, [Expression])

dsNonLinear :: NonLinearEnv -> Pattern -> DsM (NonLinearEnv, Pattern)
dsNonLinear env l@(LiteralPattern        _) = return (env, l)
dsNonLinear env n@(NegativePattern     _ _) = return (env, n)
dsNonLinear env t@(VariablePattern       v)
378
  | isAnonId v         = return (env, t)
379
380
  | v `Set.member` vis = do
    v' <- freshMonoTypeVar "_#nonlinear" t
381
382
383
384
385
    return ((vis, mkStrictEquality v v' : eqs), VariablePattern v')
  | otherwise          = return ((Set.insert v vis, eqs), t)
  where (vis, eqs) = env
dsNonLinear env (ConstructorPattern   c ts) = second (ConstructorPattern c)
                                              <$> mapAccumM dsNonLinear env ts
386
387
388
389
dsNonLinear env (InfixPattern     t1 op t2) = do
  (env1, t1') <- dsNonLinear env  t1
  (env2, t2') <- dsNonLinear env1 t2
  return (env2, InfixPattern t1' op t2')
390
391
dsNonLinear env (ParenPattern            t) = second ParenPattern
                                              <$> dsNonLinear env t
392
393
dsNonLinear env (RecordPattern        c fs) =
  second (RecordPattern c) <$> mapAccumM (dsField dsNonLinear) env fs
394
395
396
397
dsNonLinear env (TuplePattern       pos ts) = second (TuplePattern pos)
                                              <$> mapAccumM dsNonLinear env ts
dsNonLinear env (ListPattern        pos ts) = second (ListPattern pos)
                                              <$> mapAccumM dsNonLinear env ts
398
dsNonLinear env (AsPattern             v t) = do
399
400
  (env1, VariablePattern v') <- dsNonLinear env  (VariablePattern v)
  (env2, t'                ) <- dsNonLinear env1 t
401
  return (env2, AsPattern v' t')
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
dsNonLinear env (LazyPattern           r t) = second (LazyPattern r)
                                          <$> dsNonLinear env t
dsNonLinear env fp@(FunctionPattern    _ _) = dsNonLinearFuncPat env fp
dsNonLinear env fp@(InfixFuncPattern _ _ _) = dsNonLinearFuncPat env fp

dsNonLinearFuncPat :: NonLinearEnv -> Pattern -> DsM (NonLinearEnv, Pattern)
dsNonLinearFuncPat (vis, eqs) fp = do
  let fpVars = bv fp
      vs     = filter (`Set.member` vis) fpVars
  vs' <- mapM (freshMonoTypeVar "_#nonlinear" . VariablePattern) vs
  let vis' = foldr Set.insert vis fpVars
      fp'  = substPat (zip vs vs') fp
  return ((vis', zipWith mkStrictEquality vs vs' ++ eqs), fp')

mkStrictEquality :: Ident -> Ident -> Expression
mkStrictEquality x y = mkVar x =:= mkVar y

substPat :: [(Ident, Ident)] -> Pattern -> Pattern
substPat _ l@(LiteralPattern        _) = l
substPat _ n@(NegativePattern     _ _) = n
substPat s (VariablePattern         v) = VariablePattern
                                       $ fromMaybe v (lookup v s)
substPat s (ConstructorPattern   c ps) = ConstructorPattern c
                                       $ map (substPat s) ps
substPat s (InfixPattern     p1 op p2) = InfixPattern (substPat s p1) op
                                                      (substPat s p2)
substPat s (ParenPattern            p) = ParenPattern (substPat s p)
429
430
substPat s (RecordPattern        c fs) = RecordPattern c (map substField fs)
  where substField (Field pos l pat) = Field pos l (substPat s pat)
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
substPat s (TuplePattern       pos ps) = TuplePattern pos $ map (substPat s) ps
substPat s (ListPattern        pos ps) = ListPattern  pos $ map (substPat s) ps
substPat s (AsPattern             v p) = AsPattern    (fromMaybe v (lookup v s))
                                                      (substPat s p)
substPat s (LazyPattern           r p) = LazyPattern r (substPat s p)
substPat s (FunctionPattern      f ps) = FunctionPattern f $ map (substPat s) ps
substPat s (InfixFuncPattern p1 op p2) = InfixFuncPattern (substPat s p1) op
                                                          (substPat s p2)

-- -----------------------------------------------------------------------------
-- Desugaring of functional patterns
-- -----------------------------------------------------------------------------

-- Desugaring of functional patterns works in the following way:
--  1. The patterns are recursively traversed from left to right
--     to extract every functional pattern (note that functional patterns
--     can not be nested).
--     Each pattern is replaced by a fresh variable and a pair
--     (variable, functional pattern) is generated.
--  2. The variable-pattern pairs of the form @(v, p)@ are collected and
--     transformed into additional constraints of the form @p =:<= v@,
--     where the pattern @p@ is converted to the corresponding expression.
--     In addition, any variable occurring in @p@ is declared as a fresh
--     free variable.
--     Multiple constraints will later be combined using the @&>@-operator
--     such that the patterns are evaluated from left to right.

dsFunctionalPatterns :: Position -> [Pattern]
                     -> DsM ([Decl], [Expression], [Pattern])
dsFunctionalPatterns p ts = do
  -- extract functional patterns
  (bs, ts') <- mapAccumM elimFP [] ts
  -- generate declarations of free variables and constraints
  let (ds, cs) = genFPExpr p (bv ts') (reverse bs)
  -- return (declarations, constraints, desugared patterns)
  return (ds, cs, ts')

type LazyBinding = (Pattern, Ident)

elimFP :: [LazyBinding] -> Pattern -> DsM ([LazyBinding], Pattern)
elimFP bs p@(LiteralPattern        _) = return (bs, p)
elimFP bs p@(NegativePattern     _ _) = return (bs, p)
elimFP bs p@(VariablePattern       _) = return (bs, p)
elimFP bs (ConstructorPattern   c ts) = second (ConstructorPattern c)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (InfixPattern     t1 op t2) = do
  (bs1, t1') <- elimFP bs  t1
  (bs2, t2') <- elimFP bs1 t2
  return (bs2, InfixPattern t1' op t2')
elimFP bs (ParenPattern            t) = second ParenPattern <$> elimFP bs t
481
482
elimFP bs (RecordPattern        c fs) = second (RecordPattern c)
                                        <$> mapAccumM (dsField elimFP) bs fs
483
484
485
486
elimFP bs (TuplePattern       pos ts) = second (TuplePattern pos)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (ListPattern        pos ts) = second (ListPattern pos)
                                        <$> mapAccumM elimFP bs ts
487
elimFP bs (AsPattern             v t) = second (AsPattern   v) <$> elimFP bs t
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
elimFP bs (LazyPattern           r t) = second (LazyPattern r) <$> elimFP bs t
elimFP bs p@(FunctionPattern     _ _) = do
 v <- freshMonoTypeVar "_#funpatt" p
 return ((p, v) : bs, VariablePattern v)
elimFP bs p@(InfixFuncPattern  _ _ _) = do
 v <- freshMonoTypeVar "_#funpatt" p
 return ((p, v) : bs, VariablePattern v)

genFPExpr :: Position -> [Ident] -> [LazyBinding] -> ([Decl], [Expression])
genFPExpr p vs bs
  | null bs   = ([]               , [])
  | null free = ([]               , cs)
  | otherwise = ([FreeDecl p free], cs)
  where
  mkLB (t, v) = let (t', es) = fp2Expr t
                in  (t' =:<= mkVar v) : es
  cs       = concatMap mkLB bs
  free     = nub $ filter (not . isAnonId) $ bv (map fst bs) \\ vs

fp2Expr :: Pattern -> (Expression, [Expression])
fp2Expr (LiteralPattern          l) = (Literal l, [])
fp2Expr (NegativePattern       _ l) = (Literal (negateLiteral l), [])
fp2Expr (VariablePattern         v) = (mkVar v, [])
fp2Expr (ConstructorPattern   c ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (apply (Constructor c) ts', concat ess)
fp2Expr (InfixPattern     t1 op t2) =
  let (t1', es1) = fp2Expr t1
      (t2', es2) = fp2Expr t2
  in  (InfixApply t1' (InfixConstr op) t2', es1 ++ es2)
fp2Expr (ParenPattern            t) = first Paren (fp2Expr t)
fp2Expr (TuplePattern         r ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (Tuple r ts', concat ess)
fp2Expr (ListPattern         rs ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (List rs ts', concat ess)
fp2Expr (FunctionPattern      f ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (apply (Variable f) ts', concat ess)
fp2Expr (InfixFuncPattern t1 op t2) =
  let (t1', es1) = fp2Expr t1
      (t2', es2) = fp2Expr t2
  in  (InfixApply t1' (InfixOp op) t2', es1 ++ es2)
fp2Expr (AsPattern             v t) =
  let (t', es) = fp2Expr t
534
  in  (mkVar v, (t' =:<= mkVar v) : es)
535
536
537
538
fp2Expr (RecordPattern        c fs) =
  let (fs', ess) = unzip [ (Field p f e, es) | Field p f t <- fs
                                             , let (e, es) = fp2Expr t]
  in  (Record c fs', concat ess)
539
540
541
542
fp2Expr t                           = internalError $
  "Desugar.fp2Expr: Unexpected constructor term: " ++ show t

-- -----------------------------------------------------------------------------
543
-- Desugaring of ordinary patterns
544
-- -----------------------------------------------------------------------------
545
546
547
548
549
550
551
552

-- The transformation of patterns is straight forward except for lazy
-- patterns. A lazy pattern '~t' is replaced by a fresh
-- variable 'v' and a new local declaration 't = v' in the
-- scope of the pattern. In addition, as-patterns 'v@t' where
-- 't' is a variable or an as-pattern are replaced by 't' in combination
-- with a local declaration for 'v'.

553
554
555
556
557
558
559
560
561
562
563
564
565
-- Record patterns are transformed into normal constructor patterns by
-- rearranging fields in the order of the record's declaration, adding
-- fresh variables in place of omitted fields, and discarding the field
-- labels.

-- Note: By rearranging fields here we loose the ability to comply
-- strictly with the Haskell 98 pattern matching semantics, which matches
-- fields of a record pattern in the order of their occurrence in the
-- pattern. However, keep in mind that Haskell matches alternatives from
-- top to bottom and arguments within an equation or alternative from
-- left to right, which is not the case in Curry except for rigid case
-- expressions.

566
567
568
569
570
571
572
573
574
575
dsPat :: Position -> [Decl] -> Pattern -> DsM ([Decl], Pattern)
dsPat _ ds v@(VariablePattern      _) = return (ds, v)
dsPat p ds (LiteralPattern         l) = dsLiteral l >>= \dl -> case dl of
  Left  l'       -> return (ds, LiteralPattern l')
  Right (rs, ls) -> dsPat p ds $ ListPattern rs $ map LiteralPattern ls
dsPat p ds (NegativePattern      _ l) = dsPat p ds
                                        (LiteralPattern (negateLiteral l))
dsPat p ds (ConstructorPattern c [t]) = do
  isNc <- isNewtypeConstr c
  if isNc then dsPat p ds t else second (constrPat c) <$> dsPat p ds t
576
  where constrPat c' t' = ConstructorPattern c' [t']
577
578
579
580
581
582
dsPat p ds (ConstructorPattern  c ts) =
  second (ConstructorPattern c) <$> mapAccumM (dsPat p) ds ts
dsPat p ds (InfixPattern    t1 op t2) =
  dsPat p ds (ConstructorPattern op [t1, t2])
dsPat p ds (ParenPattern           t) = dsPat p ds t
dsPat p ds (RecordPattern      c  fs) = do
583
  tyEnv <- getValueEnv
584
585
  let ls = map (qualifyLike c) $ fst $ conType c tyEnv
      ts = map (dsLabel (VariablePattern anonId) (map field2Tuple fs)) ls
586
587
588
  dsPat p ds (ConstructorPattern c ts)
dsPat p ds (TuplePattern      pos ts) =
  dsPat p ds (ConstructorPattern (tupleConstr ts) ts)
589
590
  where tupleConstr ts' = addRef pos $
                         if null ts' then qUnitId else qTupleId (length ts')
591
592
dsPat p ds (ListPattern       pos ts) =
  second (dsList pos cons nil) <$> mapAccumM (dsPat p) ds ts
593
594
  where nil  p' = ConstructorPattern (addRef p' qNilId) []
        cons p' t ts' = ConstructorPattern (addRef p' qConsId) [t,ts']
595
596
597
598
599
dsPat p ds (AsPattern            v t) = dsAs p v <$> dsPat p ds t
dsPat p ds (LazyPattern          r t) = dsLazy r p ds t
dsPat p ds (FunctionPattern     f ts) = second (FunctionPattern f)
                                        <$> mapAccumM (dsPat p) ds ts
dsPat p ds (InfixFuncPattern t1 f t2) = dsPat p ds (FunctionPattern f [t1,t2])
600
601
602
603
604
605
606
607
608
609
610

dsAs :: Position -> Ident -> ([Decl], Pattern) -> ([Decl], Pattern)
dsAs p v (ds, t) = case t of
  VariablePattern v' -> (varDecl p v (mkVar v') : ds, t)
  AsPattern     v' _ -> (varDecl p v (mkVar v') : ds, t)
  _                  -> (ds, AsPattern v t)

dsLazy :: SrcRef -> Position -> [Decl] -> Pattern -> DsM ([Decl], Pattern)
dsLazy pos p ds t = case t of
  VariablePattern   _ -> return (ds, t)
  ParenPattern     t' -> dsLazy pos p ds t'
611
  AsPattern      v t' -> dsAs p v <$> dsLazy pos p ds t'
612
613
  LazyPattern pos' t' -> dsLazy pos' p ds t'
  _                   -> do
614
615
    v' <- addPositionIdent (AST pos) <$> freshMonoTypeVar "_#lazy" t
    return (patDecl p { astRef = pos } t (mkVar v') : ds, VariablePattern v')
616

617
618
619
-- -----------------------------------------------------------------------------
-- Desugaring of expressions
-- -----------------------------------------------------------------------------
620

621
622
-- Record construction expressions are transformed into normal
-- constructor applications by rearranging fields in the order of the
623
-- record's declaration, passing `Prelude.unknown` in place of
624
625
626
627
628
629
-- omitted fields, and discarding the field labels. The transformation of
-- record update expressions is a bit more involved as we must match the
-- updated expression with all valid constructors of the expression's
-- type. As stipulated by the Haskell 98 Report, a record update
-- expression @e { l_1 = e_1, ..., l_k = e_k }@ succeeds only if @e@ reduces to
-- a value @C e'_1 ... e'_n@ such that @C@'s declaration contains all
630
631
-- field labels @l_1,...,l_k@. In contrast to Haskell, we do not report
-- an error if this is not the case, but call failed instead.
632

633
dsExpr :: Position -> Expression -> DsM Expression
634
dsExpr p (Literal         l) =
635
  dsLiteral l >>=
636
  either (return . Literal) (\ (rs, ls) -> dsExpr p $ List rs $ map Literal ls)
637
dsExpr _ var@(Variable v)
638
639
640
641
642
643
644
  | isAnonId (unqualify v)   = return prelUnknown
  | otherwise                = return var
dsExpr _ c@(Constructor   _) = return c
dsExpr p (Paren           e) = dsExpr p e
dsExpr p (Typed        e ty) = Typed <$> dsExpr p e <*> dsTypeExpr ty
dsExpr p (Record       c fs) = do
  tyEnv <- getValueEnv
645
  let ls = map (qualifyLike c) $ fst $ conType c tyEnv
646
      es = map (dsLabel prelUnknown (map field2Tuple fs)) ls
647
648
  dsExpr p $ apply (Constructor c) es
dsExpr p (RecordUpdate e fs) = do
649
650
651
  TypeConstructor tc _ <- arrowBase <$> getTypeOf e
  alts  <- constructors tc >>= concatMapM (updateAlt tc)
  dsExpr p $ Case (srcRefOf p) Flex e (map (uncurry (caseAlt p)) alts)
652
  where
653
654
655
656
657
658
659
660
661
  updateAlt tc' (RecordConstr c _ labels tys)
    | all (`elem` qls) (map fieldLabel fs)    = do
      vs <- mapM (freshMonoTypeVar "_#rec") tys
      let qc = qualifyLike tc' c
          pat = ConstructorPattern qc (map VariablePattern vs)
          es = zipWith (\v l -> dsLabel (mkVar v) (map field2Tuple fs) l) vs qls
      return [(pat, apply (Constructor qc) es)]
    where qls = map (qualifyLike tc') labels
  updateAlt _   _                             = return []
662
dsExpr p (Tuple      pos es) = apply (Constructor $ tupleConstr es)
663
                               <$> mapM (dsExpr p) es
664
665
  where tupleConstr es1 = addRef pos
                        $ if null es1 then qUnitId else qTupleId (length es1)
666
dsExpr p (List       pos es) = dsList pos cons nil <$> mapM (dsExpr p) es
667
668
669
  where nil  p' = Constructor (addRef p' qNilId)
        cons p' = Apply . Apply (Constructor (addRef p' qConsId))
dsExpr p (ListCompr        r e qs) = dsListComp p r e qs
670
671
672
673
674
675
676
677
dsExpr p (EnumFrom              e) = Apply prelEnumFrom <$> dsExpr p e
dsExpr p (EnumFromThen      e1 e2) = apply prelEnumFromThen
                                     <$> mapM (dsExpr p) [e1, e2]
dsExpr p (EnumFromTo        e1 e2) = apply prelEnumFromTo
                                     <$> mapM (dsExpr p) [e1, e2]
dsExpr p (EnumFromThenTo e1 e2 e3) = apply prelEnumFromThenTo
                                     <$> mapM (dsExpr p) [e1, e2, e3]
dsExpr p (UnaryMinus         op e) = do
678
679
  ty <- getTypeOf e
  e' <- dsExpr p e
680
681
682
683
  negativeLitsEnabled <- checkNegativeLitsExtension
  return $ case e' of
    Literal l | negativeLitsEnabled -> Literal $ negateLiteral l
    _                               -> Apply (unaryMinus op ty) e'
684
685
686
687
688
689
  where
  unaryMinus op1 ty'
    | op1 ==  minusId = if ty' == floatType then prelNegateFloat else prelNegate
    | op1 == fminusId = prelNegateFloat
    | otherwise       = internalError "Desugar.unaryMinus"
dsExpr p (Apply (Constructor c) e) = do
690
691
  isNc <- isNewtypeConstr c
  if isNc then dsExpr p e else Apply (Constructor c) <$> dsExpr p e
692
dsExpr p (Apply e1 e2) = Apply <$> dsExpr p e1 <*> dsExpr p e2
693
694
695
696
697
dsExpr p (InfixApply e1 op e2) = do
  op' <- dsExpr p (infixOp op)
  e1' <- dsExpr p e1
  e2' <- dsExpr p e2
  return $ apply op' [e1', e2']
698
dsExpr p (LeftSection  e op) = Apply <$> dsExpr p (infixOp op) <*> dsExpr p e
699
700
dsExpr p (RightSection op e) = do
  op' <- dsExpr p (infixOp op)
701
  e'  <- dsExpr p e
702
703
704
705
706
707
708
  return $ apply prelFlip [op', e']
dsExpr p expr@(Lambda r ts e) = do
  ty <- getTypeOf expr
  f  <- freshIdent "_#lambda" (length ts) (polyType ty)
  dsExpr p $ Let [funDecl (AST r) f ts e] $ mkVar f
dsExpr p (Let ds e) = do
  ds' <- dsDeclGroup ds
709
  e'  <- dsExpr p e
710
  return (if null ds' then e' else Let ds' e')
711
dsExpr p (Do              sts e) = dsExpr p (dsDo sts e)
712
713
714
715
dsExpr p (IfThenElse r e1 e2 e3) = do
  e1' <- dsExpr p e1
  e2' <- dsExpr p e2
  e3' <- dsExpr p e3
716
  return $ Case r Rigid e1' [caseAlt p truePat e2', caseAlt p falsePat e3']
717
dsExpr p (Case r ct e alts) = dsCase p r ct e alts
718

719
720
721
dsTypeExpr :: TypeExpr -> DsM TypeExpr
dsTypeExpr ty = do
  tcEnv <- getTyConsEnv
722
  return $ fromType (expandType tcEnv (toType [] ty))
723

724
725
726
-- -----------------------------------------------------------------------------
-- Desugaring of case expressions
-- -----------------------------------------------------------------------------
727

728
729
730
731
732
733
734
735
-- If an alternative in a case expression has boolean guards and all of
-- these guards return 'False', the enclosing case expression does
-- not fail but continues to match the remaining alternatives against the
-- selector expression. In order to implement this semantics, which is
-- compatible with Haskell, we expand an alternative with boolean guards
-- such that it evaluates a case expression with the remaining cases that
-- are compatible with the matched pattern when the guards fail.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
dsCase :: Position -> SrcRef -> CaseType -> Expression -> [Alt] -> DsM Expression
dsCase p r ct e alts
  | null alts = return prelFailed
  | otherwise = do
    m  <- getModuleIdent
    e' <- dsExpr p e
    v  <- freshMonoTypeVar "_#case" e
    alts'  <- mapM dsAltLhs alts
    alts'' <- mapM (expandAlt v ct) (init (tails alts')) >>= mapM dsAltRhs
    return (mkCase m v e' alts'')
  where
  mkCase m v e' bs
    | v `elem` qfv m bs = Let [varDecl p v e'] (Case r ct (mkVar v) bs)
    | otherwise         = Case r ct e' bs

751
752
dsAltLhs :: Alt -> DsM Alt
dsAltLhs (Alt p t rhs) = do
753
  (ds', t') <- dsPat p [] t
754
755
756
  return $ Alt p t' (addDecls ds' rhs)

dsAltRhs :: Alt -> DsM Alt
757
dsAltRhs (Alt p t rhs) = Alt p t <$> dsRhs p id rhs
758
759
760

expandAlt :: Ident -> CaseType -> [Alt] -> DsM Alt
expandAlt _ _  []                   = error "Desugar.expandAlt: empty list"
761
expandAlt v ct (Alt p t rhs : alts) = caseAlt p t <$> expandRhs e0 id rhs
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
  where
  e0 | ct == Flex = prelFailed
     | otherwise  = Case (srcRefOf p) ct (mkVar v)
                         (filter (isCompatible t . altPattern) alts)
  altPattern (Alt _ t1 _) = t1

isCompatible :: Pattern -> Pattern -> Bool
isCompatible (VariablePattern _) _                   = True
isCompatible _                   (VariablePattern _) = True
isCompatible (AsPattern    _ t1) t2                  = isCompatible t1 t2
isCompatible t1                  (AsPattern    _ t2) = isCompatible t1 t2
isCompatible (ConstructorPattern c1 ts1) (ConstructorPattern c2 ts2)
  = and ((c1 == c2) : zipWith isCompatible ts1 ts2)
isCompatible (LiteralPattern         l1) (LiteralPattern         l2)
  = canon l1 == canon l2
  where canon (Int _ i) = Int anonId i
        canon l         = l
isCompatible _                    _                  = False

781
-- -----------------------------------------------------------------------------
782
-- Desugaring of do-Notation
783
-- -----------------------------------------------------------------------------
784

785
786
787
788
789
790
791
792
-- The do-notation is desugared in the following way:
--
-- `dsDo([]         , e)` -> `e`
-- `dsDo(e'     ; ss, e)` -> `e' >>        dsDo(ss, e)`
-- `dsDo(p <- e'; ss, e)` -> `e' >>= \p -> dsDo(ss, e)`
-- `dsDo(let ds ; ss, e)` -> `let ds in    dsDo(ss, e)`
dsDo :: [Statement] -> Expression -> Expression
dsDo sts e = foldr dsStmt e sts
793
  where
794
795
796
  dsStmt (StmtExpr r   e1) e' = apply (prelBind_ r) [e1, e']
  dsStmt (StmtBind r t e1) e' = apply (prelBind  r) [e1, Lambda r [t] e']
  dsStmt (StmtDecl     ds) e' = Let ds e'
797

798
-- -----------------------------------------------------------------------------
799
-- Desugaring of List Comprehensions
800
801
-- -----------------------------------------------------------------------------

802
803
804
805
806
807
808
809
810
811
812
813
814
815
-- In general, a list comprehension of the form
-- '[e | t <- l, qs]'
-- is transformed into an expression 'foldr f [] l' where 'f'
-- is a new function defined as
--
--     f x xs =
--       case x of
--           t -> [e | qs] ++ xs
--           _ -> xs
--
-- Note that this translation evaluates the elements of 'l' rigidly,
-- whereas the translation given in the Curry report is flexible.
-- However, it does not seem very useful to have the comprehension
-- generate instances of 't' which do not contribute to the list.
816
-- TODO: Unfortunately, this is incorrect.
817
818
819
820
821
822
823
824
825
826
827

-- Actually, we generate slightly better code in a few special cases.
-- When 't' is a plain variable, the 'case' expression degenerates
-- into a let-binding and the auxiliary function thus becomes an alias
-- for '(++)'. Instead of 'foldr (++)' we use the
-- equivalent prelude function 'concatMap'. In addition, if the
-- remaining list comprehension in the body of the auxiliary function has
-- no qualifiers -- i.e., if it is equivalent to '[e]' -- we
-- avoid the construction of the singleton list by calling '(:)'
-- instead of '(++)' and 'map' in place of 'concatMap', respectively.

828
829
830
831
dsListComp :: Position -> SrcRef -> Expression -> [Statement] -> DsM Expression
dsListComp p r e []     = dsExpr p (List [r,r] [e])
dsListComp p r e (q:qs) = dsQual p q (ListCompr r e qs)

832
833
834
835
836
837
dsQual :: Position -> Statement -> Expression -> DsM Expression
dsQual p (StmtExpr   r b) e = dsExpr p (IfThenElse r b e (List [r] []))
dsQual p (StmtDecl    ds) e = dsExpr p (Let ds e)
dsQual p (StmtBind r t l) e
  | isVarPattern t = dsExpr p (qualExpr t e l)
  | otherwise      = do
838
839
    v   <- addRefId r <$> freshMonoTypeVar "_#var" t
    l'  <- addRefId r <$> freshMonoTypeVar "_#var" e
840
841
    dsExpr p (apply (prelFoldr r) [foldFunct v l' e, List [r] [], l])
  where
842
843
844
845
  qualExpr v (ListCompr _ e1 []) l1 = apply (prelMap       r)
                                      [Lambda r [v] e1, l1]
  qualExpr v e1                  l1 = apply (prelConcatMap r)
                                      [Lambda r [v] e1, l1]
846
847
848
849
850
851
  foldFunct v l1 e1
    = Lambda r (map VariablePattern [v,l1])
       (Case r Rigid (mkVar v)
          [ caseAlt p t (append e1 (mkVar l1))
          , caseAlt p (VariablePattern v) (mkVar l1)])

852
853
854
  append (ListCompr _ e1 []) l1 = apply prelCons       [e1, l1]
  append e1                  l1 = apply (prelAppend r) [e1, l1]
  prelCons                      = Constructor $ addRef r $ qConsId
855

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
-- -----------------------------------------------------------------------------
-- Desugaring of Lists, labels, fields, and literals
-- -----------------------------------------------------------------------------

dsList :: [SrcRef] -> (SrcRef -> b -> b -> b) -> (SrcRef -> b) -> [b] -> b
dsList pos cons nil xs = snd (foldr cons' nil' xs)
  where rNil : rCs = reverse pos
        nil'                 = (rCs , nil rNil)
        cons' t (rC:rCs',ts) = (rCs', cons rC t ts)
        cons' _ ([],_) = error "Desugar.dsList.cons': empty list"

dsLabel :: a -> [(QualIdent, a)] -> QualIdent -> a
dsLabel def fs l = fromMaybe def (lookup l fs)

dsField :: (a -> b -> DsM (a, b)) -> a -> Field b -> DsM (a, Field b)
dsField ds z (Field p l x) = second (Field p l) <$> (ds z x)

dsLiteral :: Literal -> DsM (Either Literal ([SrcRef], [Literal]))
dsLiteral c@(Char             _ _) = return $ Left c
dsLiteral (Int                v i) = do
  tyEnv <- getValueEnv
  return (Left (fixType tyEnv))
  where
  fixType tyEnv | typeOf tyEnv v == floatType = Float (srcRefOf $ idPosition v)
                                                      (fromIntegral i)
                | otherwise                   = Int v i
dsLiteral f@(Float            _ _) = return $ Left f
dsLiteral (String (SrcRef [i]) cs) = return $ Right
  (consRefs i cs, zipWith (Char . SrcRef . (:[])) [i, i + 2 ..] cs)
  where consRefs r []     = [SrcRef [r]]
        consRefs r (_:xs) = let r' = r + 2
                            in  r' `seq` (SrcRef [r'] : consRefs r' xs)
dsLiteral (String is _) = internalError $
  "Desugar.dsLiteral: " ++ "wrong source ref for string "  ++ show is

negateLiteral :: Literal -> Literal
negateLiteral (Int    v i) = Int   v  (-i)
negateLiteral (Float p' f) = Float p' (-f)
negateLiteral _            = internalError "Desugar.negateLiteral"

896
897
898
899
-- ---------------------------------------------------------------------------
-- Prelude entities
-- ---------------------------------------------------------------------------

900
901
902
903
904
905
906
907
908
prel :: String -> SrcRef -> Expression
prel s r = Variable $ addRef r $ preludeIdent s

prelude :: String -> Expression
prelude = Variable . preludeIdent

preludeIdent :: String -> QualIdent
preludeIdent = qualifyWith preludeMIdent . mkIdent

909
910
911
912
913
914
915
prelBind :: SrcRef -> Expression
prelBind = prel ">>="

prelBind_ :: SrcRef -> Expression
prelBind_ = prel ">>"

prelFlip :: Expression
916
prelFlip = prelude "flip"
917
918

prelEnumFrom :: Expression
919
prelEnumFrom = prelude "enumFrom"
920
921

prelEnumFromTo :: Expression
922
prelEnumFromTo = prelude "enumFromTo"
923
924

prelEnumFromThen :: Expression
925
prelEnumFromThen = prelude "enumFromThen"
926
927

prelEnumFromThenTo :: Expression
928
prelEnumFromThenTo = prelude "enumFromThenTo"
929
930

prelFailed :: Expression
931
prelFailed = prelude "failed"
932
933

prelUnknown :: Expression
934
prelUnknown = prelude "unknown"
935
936

prelMap :: SrcRef -> Expression
937
prelMap = prel "map"
938
939
940
941
942
943
944
945
946
947
948

prelFoldr :: SrcRef -> Expression
prelFoldr = prel "foldr"

prelAppend :: SrcRef -> Expression
prelAppend = prel "++"

prelConcatMap :: SrcRef -> Expression
prelConcatMap = prel "concatMap"

prelNegate :: Expression
949
prelNegate = prelude "negate"
950
951

prelNegateFloat :: Expression
952
prelNegateFloat = prelude "negateFloat"
953
954

(=:<=) :: Expression -> Expression -> Expression
955
e1 =:<= e2 = apply (prelude "=:<=") [e1, e2]
956
957

(=:=) :: Expression -> Expression -> Expression
958
e1 =:= e2 = apply (prelude "=:=") [e1, e2]
959

960
(&>) :: Expression -> Expression -> Expression
961
e1 &> e2 = apply (prelude "cond") [e1, e2]
962

963
964
(&) :: Expression -> Expression -> Expression
e1 & e2 = apply (prelude "&") [e1, e2]
965

966
967
truePat :: Pattern
truePat = ConstructorPattern qTrueId []
968

969
970
falsePat :: Pattern
falsePat = ConstructorPattern qFalseId []
971
972
973
974
975

-- ---------------------------------------------------------------------------
-- Auxiliary definitions
-- ---------------------------------------------------------------------------

976
977
978
979
980
981
982
isNewtypeConstr :: QualIdent -> DsM Bool
isNewtypeConstr c = getValueEnv >>= \tyEnv -> return $
  case qualLookupValue c tyEnv of
    [NewtypeConstructor _ _ _] -> True
    [DataConstructor  _ _ _ _] -> False
    x -> internalError $ "Transformations.Desugar.isNewtypeConstr: "
                          ++ show c ++ " is " ++ show x
983
984
985
986
987
988
989
990
991

isVarPattern :: Pattern -> Bool
isVarPattern (VariablePattern _) = True
isVarPattern (ParenPattern    t) = isVarPattern t
isVarPattern (AsPattern     _ t) = isVarPattern t
isVarPattern (LazyPattern   _ _) = True
isVarPattern _                   = False

funDecl :: Position -> Ident -> [Pattern] -> Expression -> Decl
992
993
994
995
funDecl p f ts e = FunctionDecl p f [mkEquation p f ts e]

mkEquation :: Position -> Ident -> [Pattern] -> Expression -> Equation
mkEquation p f ts e = Equation p (FunLhs f ts) (simpleRhs p e)
996
997

patDecl :: Position -> Pattern -> Expression -> Decl
998
patDecl p t e = PatternDecl p t (simpleRhs p e)
999
1000
1001
1002
1003

varDecl :: Position -> Ident -> Expression -> Decl
varDecl p = patDecl p . VariablePattern

caseAlt :: Position -> Pattern -> Expression -> Alt
1004
1005
1006
1007
caseAlt p t e = Alt p t (simpleRhs p e)

simpleRhs :: Position -> Expression -> Rhs
simpleRhs p e = SimpleRhs p e []
1008
1009
1010
1011
1012
1013

apply :: Expression -> [Expression] -> Expression
apply = foldl Apply

mkVar :: Ident -> Expression
mkVar = Variable . qualify
1014
1015
1016
1017

-- The function 'instType' instantiates the universally quantified
-- type variables of a type scheme with fresh type variables. Since this
-- function is used only to instantiate the closed types of record
1018
-- constructors (recall that no existentially quantified type
1019
1020
-- variables are allowed for records), the compiler can reuse the same
-- monomorphic type variables for every instantiated type.
1021
1022
1023
1024
1025
1026
instType :: ExistTypeScheme -> Type
instType (ForAllExist _ _ ty) = inst ty
  where inst (TypeConstructor tc tys) = TypeConstructor tc (map inst tys)
        inst (TypeVariable        tv) = TypeVariable (-1 - tv)
        inst (TypeArrow      ty1 ty2) = TypeArrow (inst ty1) (inst ty2)
        inst ty'                      = ty'
1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
-- Expand all type synonyms in a type
expandType :: TCEnv -> Type -> Type
expandType tcEnv (TypeConstructor tc tys) = case qualLookupTC tc tcEnv of
  [DataType     tc' _  _] -> TypeConstructor tc' tys'
  [RenamingType tc' _  _] -> TypeConstructor tc' tys'
  [AliasType    _   _ ty] -> expandAliasType tys' ty
  _ -> internalError $ "Desugar.expandType " ++ show tc
  where tys' = map (expandType tcEnv) tys
expandType _     tv@(TypeVariable      _) = tv
expandType _     tc@(TypeConstrained _ _) = tc
expandType tcEnv (TypeArrow      ty1 ty2) = TypeArrow (expandType tcEnv ty1)
                                                      (expandType tcEnv ty2)
expandType _     ts@(TypeSkolem        _) = ts

-- Retrieve all constructors of a type
constructors :: QualIdent -> DsM [DataConstr]
constructors c = getTyConsEnv >>= \tcEnv -> return $
  case qualLookupTC c tcEnv of
    [DataType     _ _ cs] -> cs
    [RenamingType _ _ nc] -> [nc]
    _                     -> internalError $
      "Transformations.Desugar.constructors: " ++ show c