Desugar.hs 42.6 KB
Newer Older
1
{- |
2
3
4
5
6
  Module      :  $Header$
  Description :  Desugaring Curry Expressions
  Copyright   :  (c) 2001 - 2004 Wolfgang Lux
                                 Martin Engelke
                     2011 - 2015 Björn Peemöller
7
                     2015        Jan Tikovsky
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  License     :  OtherLicense

  Maintainer  :  bjp@informatik.uni-kiel.de
  Stability   :  experimental
  Portability :  portable

  The desugaring pass removes all syntactic sugar from the module. In
  particular, the output of the desugarer will have the following
  properties.

  * No guarded right hand sides occur in equations, pattern
    declarations, and case alternatives. In addition, the declaration
    lists of the right hand sides are empty; local declarations are
    transformed into let expressions.

  * Patterns in equations and case alternatives are composed only of
    - literals,
    - variables,
    - constructor applications, and
    - as patterns.

  * Expressions are composed only of
    - literals,
    - variables,
    - constructors,
    - (binary) applications,
    - let expressions, and
    - case expressions.

  * Applications 'N x' in patterns and expressions, where 'N' is a
    newtype constructor, are replaced by a 'x'. Note that neither the
    newtype declaration itself nor partial applications of newtype
    constructors are changed.
    It were possible to replace partial applications of newtype constructor
    by 'Prelude.id'.
    However, our solution yields a more accurate output when the result
    of a computation includes partial applications.

  * Functional patterns are replaced by variables and are integrated
    in a guarded right hand side using the (=:<=) operator

  * Records, which currently must be declared using the keyword 'type',
    are transformed into data types with one constructor.
    Record construction and pattern matching are represented using the
    record constructor. Selection and update are represented using selector
    and update functions which are generated for each record declaration.
    The record constructor must be entered into the type environment as well
    as the selector functions and the update functions.

  As we are going to insert references to real prelude entities,
  all names must be properly qualified before calling this module.
59
-}
60
{-# LANGUAGE CPP #-}
61
62
module Transformations.Desugar (desugar) where

63
64
65
#if __GLASGOW_HASKELL__ >= 710
import           Control.Applicative        ((<$>))
#else
66
import           Control.Applicative        ((<$>), (<*>))
67
#endif
68
import           Control.Arrow              (first, second)
69
import           Control.Monad              (mplus)
70
import qualified Control.Monad.State as S   (State, runState, gets, modify)
71
72
import           Data.List                  ((\\), elemIndex, nub, tails)
import           Data.Maybe                 (fromMaybe)
73
74
75
76
77
78
79
import qualified Data.Set            as Set (Set, empty, member, insert)

import Curry.Base.Ident
import Curry.Base.Position hiding (first)
import Curry.Syntax

import Base.Expr
80
import Base.CurryTypes (toType, fromType)
81
import Base.Messages   (internalError)
82
import Base.Types
83
import Base.TypeSubst  (expandAliasType)
84
import Base.Typing
85
import Base.Utils      (mapAccumM, concatMapM)
86
87

import Env.TypeConstructor (TCEnv, TypeInfo (..), qualLookupTC)
88
89
import Env.Value (ValueEnv, ValueInfo (..), bindFun, lookupValue
                 , qualLookupValue, conType)
90
91
92
93
94
95
96
97
98
99
100
101
102
103

-- New identifiers may be introduced while desugaring pattern
-- declarations, case and lambda-expressions, and list comprehensions.
-- As usual, we use a state monad transformer for generating unique
-- names. In addition, the state is also used for passing through the
-- type environment, which must be augmented with the types of these new
-- variables.

data DesugarState = DesugarState
  { moduleIdent :: ModuleIdent      -- read-only
  , extensions  :: [KnownExtension] -- read-only
  , tyConsEnv   :: TCEnv            -- read-only
  , valueEnv    :: ValueEnv
  , nextId      :: Integer     -- counter
104
  , desugarFP   :: Bool
105
106
107
108
109
110
111
  }

type DsM a = S.State DesugarState a

getModuleIdent :: DsM ModuleIdent
getModuleIdent = S.gets moduleIdent

112
113
checkNegativeLitsExtension :: DsM Bool
checkNegativeLitsExtension = S.gets (\s -> NegativeLiterals `elem` extensions s)
114
115
116
117
118
119
120
121
122
123

getTyConsEnv :: DsM TCEnv
getTyConsEnv = S.gets tyConsEnv

getValueEnv :: DsM ValueEnv
getValueEnv = S.gets valueEnv

modifyValueEnv :: (ValueEnv -> ValueEnv) -> DsM ()
modifyValueEnv f = S.modify $ \ s -> s { valueEnv = f $ valueEnv s }

124
125
126
desugarFunPats :: DsM Bool
desugarFunPats = S.gets desugarFP

127
128
129
130
131
132
133
134
135
136
137
getNextId :: DsM Integer
getNextId = do
  nid <- S.gets nextId
  S.modify $ \ s -> s { nextId = succ nid }
  return nid

-- ---------------------------------------------------------------------------
-- Generation of fresh names
-- ---------------------------------------------------------------------------

getTypeOf :: Typeable t => t -> DsM Type
138
139
getTypeOf t = do
  tyEnv <- getValueEnv
140
  return (typeOf tyEnv t)
141
142
143
144

freshIdent :: String -> Int -> TypeScheme -> DsM Ident
freshIdent prefix arity ty = do
  m <- getModuleIdent
145
  x <- freeIdent
146
147
  modifyValueEnv $ bindFun m x arity ty
  return x
148
149
150
151
152
153
154
155
156
157
158
159
160
  where
  mkName pre n = mkIdent $ pre ++ show n
  -- TODO: This loop is only necessary because a combination of desugaring,
  -- simplification and a repeated desugaring, as currently needed for
  -- non-linear and functional patterns, may reintroduce identifiers removed
  -- during desugaring. The better solution would be to move the translation
  -- of non-linear and functional pattern into a separate module.
  freeIdent = do
    x <- mkName prefix <$> getNextId
    tyEnv <- getValueEnv
    case lookupValue x tyEnv of
      [] -> return x
      _  -> freeIdent
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

freshMonoTypeVar :: Typeable t => String -> t -> DsM Ident
freshMonoTypeVar prefix t = getTypeOf t >>= \ ty ->
  freshIdent prefix (arrowArity ty) (monoType ty)

-- The desugaring phase keeps only the type, function, and value
-- declarations of the module. In the current version, record declarations
-- are transformed into data types. The remaining type declarations are
-- not desugared and cannot occur in local declaration groups.
-- They are filtered out separately.

-- In order to use records within other modules, the export specification
-- of the module has to be extended with the selector and update functions of
-- all exported labels.

-- Actually, the transformation is slightly more general than necessary
-- as it allows value declarations at the top-level of a module.

179
desugar :: Bool -> [KnownExtension] -> ValueEnv -> TCEnv -> Module
180
        -> (Module, ValueEnv)
181
desugar dsFunPats xs tyEnv tcEnv (Module ps m es is ds)
182
183
  = (Module ps m es is ds', valueEnv s')
  where (ds', s') = S.runState (desugarModuleDecls ds)
184
                               (DesugarState m xs tcEnv tyEnv 1 dsFunPats)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

desugarModuleDecls :: [Decl] -> DsM [Decl]
desugarModuleDecls ds = do
  ds'  <- concatMapM dsRecordDecl ds -- convert record decls to data decls
  ds'' <- dsDeclGroup ds'
  return $ filter isTypeDecl ds' ++ ds''

-- Within a declaration group, all type signatures and evaluation
-- annotations are discarded. First, the patterns occurring in the left
-- hand sides are desugared. Due to lazy patterns, this may add further
-- declarations to the group that must be desugared as well.

dsDeclGroup :: [Decl] -> DsM [Decl]
dsDeclGroup ds = concatMapM dsDeclLhs valDecls >>= mapM dsDeclRhs
 where valDecls = filter isValueDecl ds

dsDeclLhs :: Decl -> DsM [Decl]
dsDeclLhs (PatternDecl p t rhs) = do
  (ds', t') <- dsPattern p [] t
  dss'      <- mapM dsDeclLhs ds'
  return $ PatternDecl p t' rhs : concat dss'
dsDeclLhs (ExternalDecl   p fs) = mapM (genForeignDecl p) fs
dsDeclLhs d                     = return [d]

genForeignDecl :: Position -> Ident -> DsM Decl
genForeignDecl p f = do
  m     <- getModuleIdent
212
  ty    <- fromType <$> (getTypeOf $ Variable $ qual m f)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  return $ ForeignDecl p CallConvPrimitive (Just $ idName f) f ty
  where qual m f'
         | hasGlobalScope f' = qualifyWith m f'
         | otherwise         = qualify f'

-- After desugaring its right hand side, each equation is eta-expanded
-- by adding as many variables as necessary to the argument list and
-- applying the right hand side to those variables (Note: eta-expansion
-- is disabled in the version for PAKCS).
-- Furthermore every occurrence of a record type within the type of a function
-- is simplified to the corresponding type constructor from the record
-- declaration. This is possible because currently records must not be empty
-- and a record label belongs to only one record declaration.

dsDeclRhs :: Decl -> DsM Decl
228
dsDeclRhs (FunctionDecl     p f eqs) = FunctionDecl p f <$> mapM dsEquation eqs
229
dsDeclRhs (PatternDecl      p t rhs) = PatternDecl  p t <$> dsRhs p id rhs
230
231
232
dsDeclRhs (ForeignDecl p cc ie f ty) = return $ ForeignDecl p cc ie' f ty
  where ie' = ie `mplus` Just (idName f)
dsDeclRhs fs@(FreeDecl          _ _) = return fs
233
234
235
236
dsDeclRhs _ = error "Desugar.dsDeclRhs: no pattern match"

dsEquation :: Equation -> DsM Equation
dsEquation (Equation p lhs rhs) = do
237
238
239
240
241
242
243
244
245
  funpats        <- desugarFunPats
  (ds1, cs, ts1) <- if funpats then do
                                  (     cs1, ts1) <- dsNonLinearity         ts
                                  (ds2, cs2, ts2) <- dsFunctionalPatterns p ts1
                                  return (ds2, cs2 ++ cs1, ts2)
                                else return ([], [], ts)
  (ds2    , ts2) <- mapAccumM (dsPattern p) [] ts1
  rhs'           <- dsRhs p (addConstraints cs) $ addDecls (ds1 ++ ds2) $ rhs
  return $ Equation p (FunLhs f ts2) rhs'
246
247
  where (f, ts) = flatLhs lhs

248
249
250
251
-- -----------------------------------------------------------------------------
-- Desugaring of non-linear patterns
-- -----------------------------------------------------------------------------

252
253
254
255
-- The desugaring traverses a pattern in depth-first order and collects
-- all variables. If it encounters a variable which has been previously
-- introduced, the second occurrence is changed to a fresh variable
-- and a new pair (newvar, oldvar) is saved to generate constraints later.
256
-- Non-linear patterns inside single functional patterns are not desugared,
257
258
259
260
261
262
263
264
265
266
267
268
269
270
-- as this special case is handled later.
dsNonLinearity :: [Pattern] -> DsM ([Expression], [Pattern])
dsNonLinearity ts = do
  ((_, cs), ts') <- mapAccumM dsNonLinear (Set.empty, []) ts
  return (reverse cs, ts')

type NonLinearEnv = (Set.Set Ident, [Expression])

dsNonLinear :: NonLinearEnv -> Pattern -> DsM (NonLinearEnv, Pattern)
dsNonLinear env l@(LiteralPattern        _) = return (env, l)
dsNonLinear env n@(NegativePattern     _ _) = return (env, n)
dsNonLinear env t@(VariablePattern       v)
  | v `Set.member` vis = do
    v' <- freshMonoTypeVar "_#nonlinear" t
271
272
273
274
275
    return ((vis, mkStrictEquality v v' : eqs), VariablePattern v')
  | otherwise          = return ((Set.insert v vis, eqs), t)
  where (vis, eqs) = env
dsNonLinear env (ConstructorPattern   c ts) = second (ConstructorPattern c)
                                              <$> mapAccumM dsNonLinear env ts
276
277
278
279
dsNonLinear env (InfixPattern     t1 op t2) = do
  (env1, t1') <- dsNonLinear env  t1
  (env2, t2') <- dsNonLinear env1 t2
  return (env2, InfixPattern t1' op t2')
280
281
dsNonLinear env (ParenPattern            t) = second ParenPattern
                                              <$> dsNonLinear env t
282
283
dsNonLinear env (RecordPattern        c fs) =
  second (RecordPattern c) <$> mapAccumM (dsField dsNonLinear) env fs
284
285
286
287
dsNonLinear env (TuplePattern       pos ts) = second (TuplePattern pos)
                                              <$> mapAccumM dsNonLinear env ts
dsNonLinear env (ListPattern        pos ts) = second (ListPattern pos)
                                              <$> mapAccumM dsNonLinear env ts
288
dsNonLinear env (AsPattern             v t) = do
289
290
  (env1, VariablePattern v') <- dsNonLinear env  (VariablePattern v)
  (env2, t'                ) <- dsNonLinear env1 t
291
  return (env2, AsPattern v' t')
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
dsNonLinear env (LazyPattern           r t) = second (LazyPattern r)
                                          <$> dsNonLinear env t
dsNonLinear env fp@(FunctionPattern    _ _) = dsNonLinearFuncPat env fp
dsNonLinear env fp@(InfixFuncPattern _ _ _) = dsNonLinearFuncPat env fp

dsNonLinearFuncPat :: NonLinearEnv -> Pattern -> DsM (NonLinearEnv, Pattern)
dsNonLinearFuncPat (vis, eqs) fp = do
  let fpVars = bv fp
      vs     = filter (`Set.member` vis) fpVars
  vs' <- mapM (freshMonoTypeVar "_#nonlinear" . VariablePattern) vs
  let vis' = foldr Set.insert vis fpVars
      fp'  = substPat (zip vs vs') fp
  return ((vis', zipWith mkStrictEquality vs vs' ++ eqs), fp')

mkStrictEquality :: Ident -> Ident -> Expression
mkStrictEquality x y = mkVar x =:= mkVar y

substPat :: [(Ident, Ident)] -> Pattern -> Pattern
substPat _ l@(LiteralPattern        _) = l
substPat _ n@(NegativePattern     _ _) = n
substPat s (VariablePattern         v) = VariablePattern
                                       $ fromMaybe v (lookup v s)
substPat s (ConstructorPattern   c ps) = ConstructorPattern c
                                       $ map (substPat s) ps
substPat s (InfixPattern     p1 op p2) = InfixPattern (substPat s p1) op
                                                      (substPat s p2)
substPat s (ParenPattern            p) = ParenPattern (substPat s p)
319
320
substPat s (RecordPattern        c fs) = RecordPattern c (map substField fs)
  where substField (Field pos l pat) = Field pos l (substPat s pat)
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
substPat s (TuplePattern       pos ps) = TuplePattern pos $ map (substPat s) ps
substPat s (ListPattern        pos ps) = ListPattern  pos $ map (substPat s) ps
substPat s (AsPattern             v p) = AsPattern    (fromMaybe v (lookup v s))
                                                      (substPat s p)
substPat s (LazyPattern           r p) = LazyPattern r (substPat s p)
substPat s (FunctionPattern      f ps) = FunctionPattern f $ map (substPat s) ps
substPat s (InfixFuncPattern p1 op p2) = InfixFuncPattern (substPat s p1) op
                                                          (substPat s p2)

-- -----------------------------------------------------------------------------
-- Desugaring of functional patterns
-- -----------------------------------------------------------------------------

-- Desugaring of functional patterns works in the following way:
--  1. The patterns are recursively traversed from left to right
--     to extract every functional pattern (note that functional patterns
--     can not be nested).
--     Each pattern is replaced by a fresh variable and a pair
--     (variable, functional pattern) is generated.
--  2. The variable-pattern pairs of the form @(v, p)@ are collected and
--     transformed into additional constraints of the form @p =:<= v@,
--     where the pattern @p@ is converted to the corresponding expression.
--     In addition, any variable occurring in @p@ is declared as a fresh
--     free variable.
--     Multiple constraints will later be combined using the @&>@-operator
--     such that the patterns are evaluated from left to right.

dsFunctionalPatterns :: Position -> [Pattern]
                     -> DsM ([Decl], [Expression], [Pattern])
dsFunctionalPatterns p ts = do
  -- extract functional patterns
  (bs, ts') <- mapAccumM elimFP [] ts
  -- generate declarations of free variables and constraints
  let (ds, cs) = genFPExpr p (bv ts') (reverse bs)
  -- return (declarations, constraints, desugared patterns)
  return (ds, cs, ts')

type LazyBinding = (Pattern, Ident)

elimFP :: [LazyBinding] -> Pattern -> DsM ([LazyBinding], Pattern)
elimFP bs p@(LiteralPattern        _) = return (bs, p)
elimFP bs p@(NegativePattern     _ _) = return (bs, p)
elimFP bs p@(VariablePattern       _) = return (bs, p)
elimFP bs (ConstructorPattern   c ts) = second (ConstructorPattern c)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (InfixPattern     t1 op t2) = do
  (bs1, t1') <- elimFP bs  t1
  (bs2, t2') <- elimFP bs1 t2
  return (bs2, InfixPattern t1' op t2')
elimFP bs (ParenPattern            t) = second ParenPattern <$> elimFP bs t
371
372
elimFP bs (RecordPattern        c fs) =
  second (RecordPattern c) <$> mapAccumM (dsField elimFP) bs fs
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
elimFP bs (TuplePattern       pos ts) = second (TuplePattern pos)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (ListPattern        pos ts) = second (ListPattern pos)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (AsPattern             v t) = second (AsPattern v) <$> elimFP bs t
elimFP bs (LazyPattern           r t) = second (LazyPattern r) <$> elimFP bs t
elimFP bs p@(FunctionPattern     _ _) = do
 v <- freshMonoTypeVar "_#funpatt" p
 return ((p, v) : bs, VariablePattern v)
elimFP bs p@(InfixFuncPattern  _ _ _) = do
 v <- freshMonoTypeVar "_#funpatt" p
 return ((p, v) : bs, VariablePattern v)

genFPExpr :: Position -> [Ident] -> [LazyBinding] -> ([Decl], [Expression])
genFPExpr p vs bs
  | null bs   = ([]               , [])
  | null free = ([]               , cs)
  | otherwise = ([FreeDecl p free], cs)
  where
  mkLB (t, v) = let (t', es) = fp2Expr t
                in  (t' =:<= mkVar v) : es
  cs       = concatMap mkLB bs
  free     = nub $ filter (not . isAnonId) $ bv (map fst bs) \\ vs

fp2Expr :: Pattern -> (Expression, [Expression])
fp2Expr (LiteralPattern          l) = (Literal l, [])
fp2Expr (NegativePattern       _ l) = (Literal (negateLiteral l), [])
fp2Expr (VariablePattern         v) = (mkVar v, [])
fp2Expr (ConstructorPattern   c ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (apply (Constructor c) ts', concat ess)
fp2Expr (InfixPattern     t1 op t2) =
  let (t1', es1) = fp2Expr t1
      (t2', es2) = fp2Expr t2
  in  (InfixApply t1' (InfixConstr op) t2', es1 ++ es2)
fp2Expr (ParenPattern            t) = first Paren (fp2Expr t)
fp2Expr (TuplePattern         r ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (Tuple r ts', concat ess)
fp2Expr (ListPattern         rs ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (List rs ts', concat ess)
fp2Expr (FunctionPattern      f ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (apply (Variable f) ts', concat ess)
fp2Expr (InfixFuncPattern t1 op t2) =
  let (t1', es1) = fp2Expr t1
      (t2', es2) = fp2Expr t2
  in  (InfixApply t1' (InfixOp op) t2', es1 ++ es2)
fp2Expr (AsPattern             v t) =
  let (t', es) = fp2Expr t
  in  (mkVar v, (t' =:<= mkVar v):es)
fp2Expr t                           = internalError $
  "Desugar.fp2Expr: Unexpected constructor term: " ++ show t

-- -----------------------------------------------------------------------------
-- Desugaring of remaining patterns
-- -----------------------------------------------------------------------------
431
432
433
434
435
436
437
438

-- The transformation of patterns is straight forward except for lazy
-- patterns. A lazy pattern '~t' is replaced by a fresh
-- variable 'v' and a new local declaration 't = v' in the
-- scope of the pattern. In addition, as-patterns 'v@t' where
-- 't' is a variable or an as-pattern are replaced by 't' in combination
-- with a local declaration for 'v'.

439
440
441
442
443
444
445
446
447
448
449
450
451
-- Record patterns are transformed into normal constructor patterns by
-- rearranging fields in the order of the record's declaration, adding
-- fresh variables in place of omitted fields, and discarding the field
-- labels.

-- Note: By rearranging fields here we loose the ability to comply
-- strictly with the Haskell 98 pattern matching semantics, which matches
-- fields of a record pattern in the order of their occurrence in the
-- pattern. However, keep in mind that Haskell matches alternatives from
-- top to bottom and arguments within an equation or alternative from
-- left to right, which is not the case in Curry except for rigid case
-- expressions.

452
dsPattern :: Position -> [Decl] -> Pattern -> DsM ([Decl], Pattern)
453
dsPattern _ ds v@(VariablePattern      _) = return (ds, v)
454
455
456
457
458
459
460
461
462
dsPattern p ds (LiteralPattern         l) = do
  dl <- dsLiteral l
  case dl of
    Left  l'     -> return (ds, LiteralPattern l')
    Right (rs,ls) -> dsPattern p ds $ ListPattern rs $ map LiteralPattern ls
dsPattern p ds (NegativePattern      _ l) =
  dsPattern p ds (LiteralPattern (negateLiteral l))
dsPattern p ds (ConstructorPattern c [t]) = do
    tyEnv <- getValueEnv
463
    (if isNewtypeConstr tyEnv c then id else second (constrPat c)) <$>
464
465
          (dsPattern p ds t)
  where constrPat c' t' = ConstructorPattern c' [t']
466
dsPattern p ds (ConstructorPattern  c ts) =
467
  second (ConstructorPattern c) <$> mapAccumM (dsPattern p) ds ts
468
dsPattern p ds (InfixPattern    t1 op t2) =
469
  dsPattern p ds (ConstructorPattern op [t1,t2])
470
471
472
dsPattern p ds (ParenPattern           t) = dsPattern p ds t
dsPattern p ds (RecordPattern      c  fs) = do
  tyEnv <- getValueEnv
473
474
  let ls = map (qualifyLike c) $ fst $ conType c tyEnv
      ts = map (dsLabel (VariablePattern anonId) (map field2Tuple fs)) ls
475
476
  dsPattern p ds (ConstructorPattern c ts)
dsPattern p ds (TuplePattern      pos ts) =
477
478
479
  dsPattern p ds (ConstructorPattern (tupleConstr ts) ts)
  where tupleConstr ts' = addRef pos $
                         if null ts' then qUnitId else qTupleId (length ts')
480
dsPattern p ds (ListPattern       pos ts) =
481
  second (dsList pos cons nil) <$> mapAccumM (dsPattern p) ds ts
482
483
  where nil  p' = ConstructorPattern (addRef p' qNilId) []
        cons p' t ts' = ConstructorPattern (addRef p' qConsId) [t,ts']
484
485
486
dsPattern p ds (AsPattern            v t) = dsAs p v <$> dsPattern p ds t
dsPattern p ds (LazyPattern          r t) = dsLazy r p ds t
dsPattern p ds (FunctionPattern     f ts) =
487
  second (FunctionPattern f) <$> mapAccumM (dsPattern p) ds ts
488
489
490
491
492
dsPattern p ds (InfixFuncPattern t1 f t2) =
  dsPattern p ds (FunctionPattern f [t1,t2])

dsLiteral :: Literal -> DsM (Either Literal ([SrcRef], [Literal]))
dsLiteral c@(Char             _ _) = return $ Left c
493
494
dsLiteral (Int                v i) = do
  tyEnv <- getValueEnv
495
496
497
  return (Left (fixType tyEnv))
  where fixType tyEnv'
          | typeOf tyEnv' v == floatType =
498
              Float (srcRefOf $ idPosition v) (fromIntegral i)
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
          | otherwise = Int v i
dsLiteral f@(Float            _ _) = return $ Left f
dsLiteral (String (SrcRef [i]) cs) = return $ Right
  (consRefs i cs, zipWith (Char . SrcRef . (:[])) [i, i + 2 ..] cs)
  where consRefs r []     = [SrcRef [r]]
        consRefs r (_:xs) = let r' = r + 2
                            in  r' `seq` (SrcRef [r'] : consRefs r' xs)
dsLiteral (String is _) = internalError $
  "Desugar.dsLiteral: " ++ "wrong source ref for string "  ++ show is

dsList :: [SrcRef] -> (SrcRef -> b -> b -> b) -> (SrcRef -> b) -> [b] -> b
dsList pos cons nil xs = snd (foldr cons' nil' xs)
  where rNil : rCs = reverse pos
        nil'                 = (rCs , nil rNil)
        cons' t (rC:rCs',ts) = (rCs', cons rC t ts)
        cons' _ ([],_) = error "Desugar.dsList.cons': empty list"

dsAs :: Position -> Ident -> ([Decl], Pattern) -> ([Decl], Pattern)
dsAs p v (ds, t) = case t of
  VariablePattern v' -> (varDecl p v (mkVar v') : ds, t)
  AsPattern     v' _ -> (varDecl p v (mkVar v') : ds, t)
  _                  -> (ds, AsPattern v t)

dsLazy :: SrcRef -> Position -> [Decl] -> Pattern -> DsM ([Decl], Pattern)
dsLazy pos p ds t = case t of
  VariablePattern   _ -> return (ds, t)
  ParenPattern     t' -> dsLazy pos p ds t'
526
  AsPattern      v t' -> dsAs p v <$> dsLazy pos p ds t'
527
528
  LazyPattern pos' t' -> dsLazy pos' p ds t'
  _                   -> do
529
   v' <- addPositionIdent (AST pos) <$> freshMonoTypeVar "_#lazy" t
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
   return (patDecl p { astRef = pos } t (mkVar v') : ds, VariablePattern v')

negateLiteral :: Literal -> Literal
negateLiteral (Int    v i) = Int   v  (-i)
negateLiteral (Float p' f) = Float p' (-f)
negateLiteral _            = internalError "Desugar.negateLiteral"

-- A list of boolean guards is expanded into a nested if-then-else
-- expression, whereas a constraint guard is replaced by a case
-- expression. Note that if the guard type is 'Success' only a
-- single guard is allowed for each equation (This change was
-- introduced in version 0.8 of the Curry report.). We check for the
-- type 'Bool' of the guard because the guard's type defaults to
-- 'Success' if it is not restricted by the guard expression.

dsRhs :: Position -> (Expression -> Expression) -> Rhs -> DsM Rhs
dsRhs p f rhs = do
  e' <- expandRhs prelFailed f rhs >>= dsExpr p
  return (SimpleRhs p e' [])

expandRhs :: Expression -> (Expression -> Expression) -> Rhs -> DsM Expression
expandRhs _  f (SimpleRhs _ e ds) = return $ Let ds (f e)
552
expandRhs e0 f (GuardedRhs es ds) = (Let ds . f) <$> expandGuards e0 es
553
554
555
556

expandGuards :: Expression -> [CondExpr] -> DsM Expression
expandGuards e0 es = do
  tyEnv <- getValueEnv
557
  return $ if booleanGuards tyEnv es
558
559
560
561
562
563
564
565
566
              then foldr mkIfThenElse e0 es
              else mkCond es
  where mkIfThenElse (CondExpr p g e) = IfThenElse (srcRefOf p) g e
        mkCond       [CondExpr _ g e] = apply prelCond [g, e]
        mkCond _ = error "Desugar.expandGuards.mkCond: non-unary list"

addConstraints :: [Expression] -> Expression -> Expression
addConstraints cs e
  | null cs   = e
567
  | otherwise = apply prelCond [foldr1 (&>) cs, e]
568

569
570
571
572
booleanGuards :: ValueEnv -> [CondExpr] -> Bool
booleanGuards _     []                    = False
booleanGuards tyEnv (CondExpr _ g _ : es) =
  not (null es) || typeOf tyEnv g == boolType
573

574
575
576
577
578
579
580
581
582
583
584
585
586
-- Record construction expressions are transformed into normal
-- constructor applications by rearranging fields in the order of the
-- record's declaration, passing `Prelude.undefined` in place of
-- omitted fields, and discarding the field labels. The transformation of
-- record update expressions is a bit more involved as we must match the
-- updated expression with all valid constructors of the expression's
-- type. As stipulated by the Haskell 98 Report, a record update
-- expression @e { l_1 = e_1, ..., l_k = e_k }@ succeeds only if @e@ reduces to
-- a value @C e'_1 ... e'_n@ such that @C@'s declaration contains all
-- field labels @l_1,...,l_k@. In contrast to Haskell we do not report
-- an error if this is not the case but rather fail only the current
-- solution.

587
dsExpr :: Position -> Expression -> DsM Expression
588
dsExpr p (Literal         l) =
589
590
591
  dsLiteral l >>=
  either (return . Literal) (\ (pos, ls) -> dsExpr p $ List pos $ map Literal ls)
dsExpr _ var@(Variable v)
592
593
594
595
596
597
598
  | isAnonId (unqualify v)   = return prelUnknown
  | otherwise                = return var
dsExpr _ c@(Constructor   _) = return c
dsExpr p (Paren           e) = dsExpr p e
dsExpr p (Typed        e ty) = Typed <$> dsExpr p e <*> dsTypeExpr ty
dsExpr p (Record       c fs) = do
  tyEnv <- getValueEnv
599
600
  let ls = map (qualifyLike c) $ fst $ conType c tyEnv
      es = map (dsLabel prelFailed (map field2Tuple fs)) ls
601
602
603
604
605
  dsExpr p $ apply (Constructor c) es
dsExpr p (RecordUpdate e fs) = do
  tcEnv <- getTyConsEnv
  ty    <- getTypeOf e
  let (TypeConstructor tc _) = arrowBase ty
606
607
  alts  <- mapM (updateAlt tc) (constructors tc tcEnv)
  dsExpr p $ Case (srcRefOf p) Flex e (map (uncurry (caseAlt p)) (concat alts))
608
609
  where
    ls = map fieldLabel fs
610
611
612
    updateAlt _   (DataConstr          _ _ _)          = return []
    updateAlt tc' (RecordConstr c _ labels _)
      | all (`elem` (map (qualifyLike tc') labels)) ls = do
613
          vs <- mapM (freshMonoTypeVar "_#rec" . VariablePattern) labels
614
615
616
617
          let qls = map (qualifyLike tc') labels
              es  = zipWith (\v l -> dsLabel (mkVar v) (map field2Tuple fs) l)
                      vs qls
              qc  = qualifyLike tc' c
618
          return [(constrPat qc vs, apply (Constructor qc) es)]
619
      | otherwise                             = return []
620
621
    constrPat qc' vs' = ConstructorPattern qc' (map VariablePattern vs')
dsExpr p (Tuple      pos es) = apply (Constructor $ tupleConstr es)
622
623
624
                             <$> mapM (dsExpr p) es
  where tupleConstr es1 = addRef pos
                        $ if null es1 then qUnitId else qTupleId (length es1)
625
dsExpr p (List       pos es) = dsList pos cons nil <$> mapM (dsExpr p) es
626
627
  where nil p'  = Constructor (addRef p' qNilId)
        cons p' = Apply . Apply (Constructor $ addRef p' qConsId)
628
629
630
631
632
633
634
635
636
637
dsExpr p (ListCompr    r e []    ) = dsExpr p (List [r,r] [e])
dsExpr p (ListCompr    r e (q:qs)) = dsQual p q (ListCompr r e qs)
dsExpr p (EnumFrom              e) = Apply prelEnumFrom <$> dsExpr p e
dsExpr p (EnumFromThen      e1 e2) = apply prelEnumFromThen
                                     <$> mapM (dsExpr p) [e1, e2]
dsExpr p (EnumFromTo        e1 e2) = apply prelEnumFromTo
                                     <$> mapM (dsExpr p) [e1, e2]
dsExpr p (EnumFromThenTo e1 e2 e3) = apply prelEnumFromThenTo
                                     <$> mapM (dsExpr p) [e1, e2, e3]
dsExpr p (UnaryMinus         op e) = do
638
639
  ty <- getTypeOf e
  e' <- dsExpr p e
640
641
642
643
  negativeLitsEnabled <- checkNegativeLitsExtension
  return $ case e' of
    Literal l | negativeLitsEnabled -> Literal $ negateLiteral l
    _                               -> Apply (unaryMinus op ty) e'
644
645
646
647
648
649
650
  where
  unaryMinus op1 ty'
    | op1 ==  minusId = if ty' == floatType then prelNegateFloat else prelNegate
    | op1 == fminusId = prelNegateFloat
    | otherwise       = internalError "Desugar.unaryMinus"
dsExpr p (Apply (Constructor c) e) = do
  tyEnv <- getValueEnv
651
652
653
  (if isNewtypeConstr tyEnv c then id else (Apply (Constructor c))) <$>
    dsExpr p e
dsExpr p (Apply e1 e2) = Apply <$> dsExpr p e1 <*> dsExpr p e2
654
655
656
657
658
dsExpr p (InfixApply e1 op e2) = do
  op' <- dsExpr p (infixOp op)
  e1' <- dsExpr p e1
  e2' <- dsExpr p e2
  return $ apply op' [e1', e2']
659
dsExpr p (LeftSection  e op) = Apply <$> dsExpr p (infixOp op) <*> dsExpr p e
660
661
dsExpr p (RightSection op e) = do
  op' <- dsExpr p (infixOp op)
662
  e'  <- dsExpr p e
663
664
665
666
667
668
669
  return $ apply prelFlip [op', e']
dsExpr p expr@(Lambda r ts e) = do
  ty <- getTypeOf expr
  f  <- freshIdent "_#lambda" (length ts) (polyType ty)
  dsExpr p $ Let [funDecl (AST r) f ts e] $ mkVar f
dsExpr p (Let ds e) = do
  ds' <- dsDeclGroup ds
670
  e'  <- dsExpr p e
671
  return (if null ds' then e' else Let ds' e')
672
dsExpr p (Do sts e) = dsExpr p (foldr desugarStmt e sts)
673
674
675
676
677
678
679
  where desugarStmt (StmtExpr r e1) e' = apply (prelBind_ r) [e1,e']
        desugarStmt (StmtBind r t e1) e' = apply (prelBind r) [e1,Lambda r [t] e']
        desugarStmt (StmtDecl ds) e' = Let ds e'
dsExpr p (IfThenElse r e1 e2 e3) = do
  e1' <- dsExpr p e1
  e2' <- dsExpr p e2
  e3' <- dsExpr p e3
680
  return $ Case r Rigid e1' [caseAlt p truePat e2', caseAlt p falsePat e3']
681
682
683
684
685
686
687
688
689
690
691
692
693
dsExpr p (Case r ct e alts)
  | null alts = return prelFailed
  | otherwise = do
    m  <- getModuleIdent
    e' <- dsExpr p e
    v  <- freshMonoTypeVar "_#case" e
    alts'  <- mapM dsAltLhs alts
    alts'' <- mapM (expandAlt v ct) (init (tails alts')) >>= mapM dsAltRhs
    return (mkCase m v e' alts'')
  where
  mkCase m1 v e1 alts1
    | v `elem` qfv m1 alts1 = Let [varDecl p v e1] (Case r ct (mkVar v) alts1)
    | otherwise             = Case r ct e1 alts1
694

695
dsLabel :: a -> [(QualIdent, a)] -> QualIdent -> a
696
697
698
699
700
dsLabel def fs l = fromMaybe def (lookup l fs)

dsField :: (a -> b -> DsM (a, b)) -> a -> Field b -> DsM (a, Field b)
dsField ds z (Field p l x) = do (z', x') <- ds z x
                                return (z', Field p l x')
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
dsTypeExpr :: TypeExpr -> DsM TypeExpr
dsTypeExpr ty = do
  tcEnv <- getTyConsEnv
  let expType = expandType tcEnv (toType [] ty)
  return $ fromType expType

expandType :: TCEnv -> Type -> Type
expandType tcEnv (TypeConstructor tc tys) = case qualLookupTC tc tcEnv of
  [DataType     tc' _  _] -> TypeConstructor tc' tys'
  [RenamingType tc' _  _] -> TypeConstructor tc' tys'
  [AliasType    _   _ ty] -> expandAliasType tys' ty
  _ -> internalError $ "Desugar.expandType " ++ show tc
  where tys' = map (expandType tcEnv) tys
expandType _     tv@(TypeVariable      _) = tv
expandType _     tc@(TypeConstrained _ _) = tc
expandType tcEnv (TypeArrow      ty1 ty2) =
  TypeArrow (expandType tcEnv ty1) (expandType tcEnv ty2)
expandType _     ts@(TypeSkolem        _) = ts

721
722
723
724
725
726
727
728
729
730
731
732
733
734
-- If an alternative in a case expression has boolean guards and all of
-- these guards return 'False', the enclosing case expression does
-- not fail but continues to match the remaining alternatives against the
-- selector expression. In order to implement this semantics, which is
-- compatible with Haskell, we expand an alternative with boolean guards
-- such that it evaluates a case expression with the remaining cases that
-- are compatible with the matched pattern when the guards fail.

dsAltLhs :: Alt -> DsM Alt
dsAltLhs (Alt p t rhs) = do
  (ds', t') <- dsPattern p [] t
  return $ Alt p t' (addDecls ds' rhs)

dsAltRhs :: Alt -> DsM Alt
735
dsAltRhs (Alt p t rhs) = Alt p t <$> dsRhs p id rhs
736
737
738

expandAlt :: Ident -> CaseType -> [Alt] -> DsM Alt
expandAlt _ _  []                   = error "Desugar.expandAlt: empty list"
739
expandAlt v ct (Alt p t rhs : alts) = caseAlt p t <$> expandRhs e0 id rhs
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  where
  e0 | ct == Flex = prelFailed
     | otherwise  = Case (srcRefOf p) ct (mkVar v)
                         (filter (isCompatible t . altPattern) alts)
  altPattern (Alt _ t1 _) = t1

isCompatible :: Pattern -> Pattern -> Bool
isCompatible (VariablePattern _) _                   = True
isCompatible _                   (VariablePattern _) = True
isCompatible (AsPattern    _ t1) t2                  = isCompatible t1 t2
isCompatible t1                  (AsPattern    _ t2) = isCompatible t1 t2
isCompatible (ConstructorPattern c1 ts1) (ConstructorPattern c2 ts2)
  = and ((c1 == c2) : zipWith isCompatible ts1 ts2)
isCompatible (LiteralPattern         l1) (LiteralPattern         l2)
  = canon l1 == canon l2
  where canon (Int _ i) = Int anonId i
        canon l         = l
isCompatible _                    _                  = False

759
-- -----------------------------------------------------------------------------
760
-- Desugaring of Records
761
-- -----------------------------------------------------------------------------
762

763
764
765
766
767
-- As an extension to the Curry language the compiler supports Haskell's
-- record syntax, which introduces field labels for data and renaming
-- types. Field labels can be used in constructor declarations, patterns,
-- and expressions. For further convenience, an implicit selector
-- function is introduced for each field label.
768

769
770
-- Generate selection functions for record labels and replace record
-- constructor declarations by normal constructor declarations
771
dsRecordDecl :: Decl -> DsM [Decl]
772
773
774
775
776
777
778
779
780
781
782
783
dsRecordDecl (DataDecl p tc tvs cs) = do
  m  <- getModuleIdent
  let qcs = map (qualifyWith m . constrId) cs
  selFuns <- mapM (genSelectFunc p qcs) labels
  return $ DataDecl p tc tvs (map unlabelConstr cs) : selFuns
  where
    labels = nub $ concatMap recordLabels cs
dsRecordDecl (NewtypeDecl p tc tvs nc) = do
  m <- getModuleIdent
  let qc = qualifyWith m (nconstrId nc)
  selFun <- mapM (genSelectFunc p [qc]) (nrecordLabels nc)
  return $ NewtypeDecl p tc tvs (unlabelNewConstr nc) : selFun
784
785
dsRecordDecl d = return [d]

786
787
788
-- Generate selection function for a record label
genSelectFunc :: Position -> [QualIdent] -> Ident -> DsM Decl
genSelectFunc p qcs l = do
789
790
--   m     <- getModuleIdent
--   tyEnv <- getValueEnv
791
  eqs   <- concat <$> mapM (selectorEqn l) qcs
792
793
794
795
796
797
--   let (_, ty)    = conType (head qcs) tyEnv
--       (tys, rty) = arrowUnapply (instType ty)
--       selType    = polyType (TypeArrow rty (tys !! n))
--   let selId = qualifyWith m l
--   modifyValueEnv $ bindFun m selId 1 selType
  return $ FunctionDecl p l [funEqn l [pat] e | (pat, e) <- eqs]
798
  where
799
    funEqn f ps e = Equation p (FunLhs f ps) (SimpleRhs p e [])
800

801
802
803
804
805
806
807
808
-- Generate pattern and rhs for selection function and
-- add its type to the value environment
selectorEqn :: Ident -> QualIdent -> DsM [(Pattern, Expression)]
selectorEqn l qc = do
  tyEnv <- getValueEnv
  let (ls, _) = conType qc tyEnv
  case elemIndex l ls of
    Just n  -> do vs <- mapM (freshMonoTypeVar "_#rec" . VariablePattern) ls
809
810
811
                  let pvs = map VariablePattern vs
                      v   = qualify (vs !! n)
                  return [(ConstructorPattern qc pvs, Variable v)]
812
813
814
815
816
817
818
819
820
821
822
    Nothing -> return []

-- Transform record constructor declarations into normal declarations
unlabelConstr :: ConstrDecl -> ConstrDecl
unlabelConstr (RecordDecl p evs c fs) = ConstrDecl p evs c tys
  where tys = [ty | FieldDecl _ ls ty <- fs, _ <- ls]
unlabelConstr c                       = c

unlabelNewConstr :: NewConstrDecl -> NewConstrDecl
unlabelNewConstr (NewRecordDecl p evs nc (_, ty)) = NewConstrDecl p evs nc ty
unlabelNewConstr c                                = c
823

824
825
826
827
-- -----------------------------------------------------------------------------
-- Desugaring of List Comprehension
-- -----------------------------------------------------------------------------

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
-- In general, a list comprehension of the form
-- '[e | t <- l, qs]'
-- is transformed into an expression 'foldr f [] l' where 'f'
-- is a new function defined as
--
--     f x xs =
--       case x of
--           t -> [e | qs] ++ xs
--           _ -> xs
--
-- Note that this translation evaluates the elements of 'l' rigidly,
-- whereas the translation given in the Curry report is flexible.
-- However, it does not seem very useful to have the comprehension
-- generate instances of 't' which do not contribute to the list.

-- Actually, we generate slightly better code in a few special cases.
-- When 't' is a plain variable, the 'case' expression degenerates
-- into a let-binding and the auxiliary function thus becomes an alias
-- for '(++)'. Instead of 'foldr (++)' we use the
-- equivalent prelude function 'concatMap'. In addition, if the
-- remaining list comprehension in the body of the auxiliary function has
-- no qualifiers -- i.e., if it is equivalent to '[e]' -- we
-- avoid the construction of the singleton list by calling '(:)'
-- instead of '(++)' and 'map' in place of 'concatMap', respectively.

dsQual :: Position -> Statement -> Expression -> DsM Expression
dsQual p (StmtExpr   r b) e = dsExpr p (IfThenElse r b e (List [r] []))
dsQual p (StmtDecl    ds) e = dsExpr p (Let ds e)
dsQual p (StmtBind r t l) e
  | isVarPattern t = dsExpr p (qualExpr t e l)
  | otherwise      = do
859
860
    v   <- addRefId r <$> freshMonoTypeVar "_#var" t
    l'  <- addRefId r <$> freshMonoTypeVar "_#var" e
861
862
    dsExpr p (apply (prelFoldr r) [foldFunct v l' e, List [r] [], l])
  where
863
864
865
866
  qualExpr v (ListCompr _ e1 []) l1 = apply (prelMap       r)
                                      [Lambda r [v] e1, l1]
  qualExpr v e1                  l1 = apply (prelConcatMap r)
                                      [Lambda r [v] e1, l1]
867
868
869
870
871
872
  foldFunct v l1 e1
    = Lambda r (map VariablePattern [v,l1])
       (Case r Rigid (mkVar v)
          [ caseAlt p t (append e1 (mkVar l1))
          , caseAlt p (VariablePattern v) (mkVar l1)])

873
874
875
  append (ListCompr _ e1 []) l1 = apply prelCons       [e1, l1]
  append e1                  l1 = apply (prelAppend r) [e1, l1]
  prelCons                      = Constructor $ addRef r $ qConsId
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

-- ---------------------------------------------------------------------------
-- Prelude entities
-- ---------------------------------------------------------------------------

prelBind :: SrcRef -> Expression
prelBind = prel ">>="

prelBind_ :: SrcRef -> Expression
prelBind_ = prel ">>"

prelFlip :: Expression
prelFlip = Variable $ preludeIdent "flip"

prelEnumFrom :: Expression
prelEnumFrom = Variable $ preludeIdent "enumFrom"

prelEnumFromTo :: Expression
prelEnumFromTo = Variable $ preludeIdent "enumFromTo"

prelEnumFromThen :: Expression
prelEnumFromThen = Variable $ preludeIdent "enumFromThen"

prelEnumFromThenTo :: Expression
prelEnumFromThenTo = Variable $ preludeIdent "enumFromThenTo"

prelFailed :: Expression
prelFailed = Variable $ preludeIdent "failed"

prelUnknown :: Expression
prelUnknown = Variable $ preludeIdent "unknown"

prelMap :: SrcRef -> Expression
prelMap r = Variable $ addRef r $ preludeIdent "map"

prelFoldr :: SrcRef -> Expression
prelFoldr = prel "foldr"

prelAppend :: SrcRef -> Expression
prelAppend = prel "++"

prelConcatMap :: SrcRef -> Expression
prelConcatMap = prel "concatMap"

prelNegate :: Expression
prelNegate = Variable $ preludeIdent "negate"

prelNegateFloat :: Expression
prelNegateFloat = Variable $ preludeIdent "negateFloat"

prelCond :: Expression
prelCond = Variable $ preludeIdent "cond"

(=:<=) :: Expression -> Expression -> Expression
e1 =:<= e2 = apply prelFPEq [e1, e2]

prelFPEq :: Expression
prelFPEq = Variable $ preludeIdent "=:<="

(=:=) :: Expression -> Expression -> Expression
e1 =:= e2 = apply prelSEq [e1, e2]

prelSEq :: Expression
prelSEq = Variable $ preludeIdent "=:="

941
942
(&>) :: Expression -> Expression -> Expression
e1 &> e2 = apply prelCond [e1, e2]
943
944
945
946

prel :: String -> SrcRef -> Expression
prel s r = Variable $ addRef r $ preludeIdent s

947
948
truePat :: Pattern
truePat = ConstructorPattern qTrueId []
949

950
951
falsePat :: Pattern
falsePat = ConstructorPattern qFalseId []
952
953
954
955
956
957
958
959
960
961

preludeIdent :: String -> QualIdent
preludeIdent = qualifyWith preludeMIdent . mkIdent

-- ---------------------------------------------------------------------------
-- Auxiliary definitions
-- ---------------------------------------------------------------------------

isNewtypeConstr :: ValueEnv -> QualIdent -> Bool
isNewtypeConstr tyEnv c = case qualLookupValue c tyEnv of
962
963
  [NewtypeConstructor _ _ _] -> True
  [DataConstructor  _ _ _ _] -> False
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
  x -> internalError $ "Transformations.Desugar.isNewtypeConstr: "
                        ++ show c ++ " is " ++ show x

isVarPattern :: Pattern -> Bool
isVarPattern (VariablePattern _) = True
isVarPattern (ParenPattern    t) = isVarPattern t
isVarPattern (AsPattern     _ t) = isVarPattern t
isVarPattern (LazyPattern   _ _) = True
isVarPattern _                   = False

funDecl :: Position -> Ident -> [Pattern] -> Expression -> Decl
funDecl p f ts e = FunctionDecl p f
  [Equation p (FunLhs f ts) (SimpleRhs p e [])]

patDecl :: Position -> Pattern -> Expression -> Decl
patDecl p t e = PatternDecl p t (SimpleRhs p e [])

varDecl :: Position -> Ident -> Expression -> Decl
varDecl p = patDecl p . VariablePattern

addDecls :: [Decl] -> Rhs -> Rhs
addDecls ds (SimpleRhs p e ds') = SimpleRhs p e (ds ++ ds')
addDecls ds (GuardedRhs es ds') = GuardedRhs es (ds ++ ds')

caseAlt :: Position -> Pattern -> Expression -> Alt
caseAlt p t e = Alt p t (SimpleRhs p e [])

apply :: Expression -> [Expression] -> Expression
apply = foldl Apply

mkVar :: Ident -> Expression
mkVar = Variable . qualify
996
997
998
999
1000
1001
1002
1003

-- The function 'instType' instantiates the universally quantified
-- type variables of a type scheme with fresh type variables. Since this
-- function is used only to instantiate the closed types of record
-- constructors (Recall that no existentially quantified type
-- variables are allowed for records), the compiler can reuse the same
-- monomorphic type variables for every instantiated type.

1004
1005
1006
1007
1008
-- instType :: ExistTypeScheme -> Type
-- instType (ForAllExist _ _ ty) = inst ty
--   where inst (TypeConstructor tc tys) = TypeConstructor tc (map inst tys)
--         inst (TypeVariable tv) = TypeVariable (-1 - tv)
--         inst (TypeArrow ty1 ty2) = TypeArrow (inst ty1) (inst ty2)
1009
1010

constructors :: QualIdent -> TCEnv -> [DataConstr]
1011
constructors c tcEnv = case qualLookupTC c tcEnv of
1012
  [DataType     _ _ cs] -> cs
1013
  [RenamingType _ _ nc] -> [nc]
1014
1015
  _                     -> internalError $
    "Transformations.Desugar.constructors: " ++ show c