Desugar.hs 42.4 KB
Newer Older
1
{- |
2
3
4
5
6
  Module      :  $Header$
  Description :  Desugaring Curry Expressions
  Copyright   :  (c) 2001 - 2004 Wolfgang Lux
                                 Martin Engelke
                     2011 - 2015 Björn Peemöller
7
                     2015        Jan Tikovsky
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  License     :  OtherLicense

  Maintainer  :  bjp@informatik.uni-kiel.de
  Stability   :  experimental
  Portability :  portable

  The desugaring pass removes all syntactic sugar from the module. In
  particular, the output of the desugarer will have the following
  properties.

  * No guarded right hand sides occur in equations, pattern
    declarations, and case alternatives. In addition, the declaration
    lists of the right hand sides are empty; local declarations are
    transformed into let expressions.

  * Patterns in equations and case alternatives are composed only of
    - literals,
    - variables,
    - constructor applications, and
    - as patterns.

  * Expressions are composed only of
    - literals,
    - variables,
    - constructors,
    - (binary) applications,
    - let expressions, and
    - case expressions.

  * Applications 'N x' in patterns and expressions, where 'N' is a
    newtype constructor, are replaced by a 'x'. Note that neither the
    newtype declaration itself nor partial applications of newtype
    constructors are changed.
    It were possible to replace partial applications of newtype constructor
    by 'Prelude.id'.
    However, our solution yields a more accurate output when the result
    of a computation includes partial applications.

  * Functional patterns are replaced by variables and are integrated
    in a guarded right hand side using the (=:<=) operator

  * Records, which currently must be declared using the keyword 'type',
    are transformed into data types with one constructor.
    Record construction and pattern matching are represented using the
    record constructor. Selection and update are represented using selector
    and update functions which are generated for each record declaration.
    The record constructor must be entered into the type environment as well
    as the selector functions and the update functions.

  As we are going to insert references to real prelude entities,
  all names must be properly qualified before calling this module.
59
-}
60
{-# LANGUAGE CPP #-}
61
62
module Transformations.Desugar (desugar) where

63
64
65
#if __GLASGOW_HASKELL__ >= 710
import           Control.Applicative        ((<$>))
#else
66
import           Control.Applicative        ((<$>), (<*>))
67
#endif
68
import           Control.Arrow              (first, second)
69
import           Control.Monad              (mplus)
70
import qualified Control.Monad.State as S   (State, runState, gets, modify)
71
72
import           Data.List                  ((\\), elemIndex, nub, tails)
import           Data.Maybe                 (fromMaybe)
73
74
75
76
77
78
79
import qualified Data.Set            as Set (Set, empty, member, insert)

import Curry.Base.Ident
import Curry.Base.Position hiding (first)
import Curry.Syntax

import Base.Expr
80
import Base.CurryTypes (toType, fromType)
81
import Base.Messages   (internalError)
82
import Base.Types
83
import Base.TypeSubst  (expandAliasType)
84
import Base.Typing
85
import Base.Utils      (mapAccumM, concatMapM)
86
87

import Env.TypeConstructor (TCEnv, TypeInfo (..), qualLookupTC)
88
89
import Env.Value (ValueEnv, ValueInfo (..), bindFun, lookupValue
                 , qualLookupValue, conType)
90
91
92
93
94
95
96
97
98
99
100
101
102
103

-- New identifiers may be introduced while desugaring pattern
-- declarations, case and lambda-expressions, and list comprehensions.
-- As usual, we use a state monad transformer for generating unique
-- names. In addition, the state is also used for passing through the
-- type environment, which must be augmented with the types of these new
-- variables.

data DesugarState = DesugarState
  { moduleIdent :: ModuleIdent      -- read-only
  , extensions  :: [KnownExtension] -- read-only
  , tyConsEnv   :: TCEnv            -- read-only
  , valueEnv    :: ValueEnv
  , nextId      :: Integer     -- counter
104
  , desugarFP   :: Bool
105
106
107
108
109
110
111
  }

type DsM a = S.State DesugarState a

getModuleIdent :: DsM ModuleIdent
getModuleIdent = S.gets moduleIdent

112
113
checkNegativeLitsExtension :: DsM Bool
checkNegativeLitsExtension = S.gets (\s -> NegativeLiterals `elem` extensions s)
114
115
116
117
118
119
120
121
122
123

getTyConsEnv :: DsM TCEnv
getTyConsEnv = S.gets tyConsEnv

getValueEnv :: DsM ValueEnv
getValueEnv = S.gets valueEnv

modifyValueEnv :: (ValueEnv -> ValueEnv) -> DsM ()
modifyValueEnv f = S.modify $ \ s -> s { valueEnv = f $ valueEnv s }

124
125
126
desugarFunPats :: DsM Bool
desugarFunPats = S.gets desugarFP

127
128
129
130
131
132
133
134
135
136
137
getNextId :: DsM Integer
getNextId = do
  nid <- S.gets nextId
  S.modify $ \ s -> s { nextId = succ nid }
  return nid

-- ---------------------------------------------------------------------------
-- Generation of fresh names
-- ---------------------------------------------------------------------------

getTypeOf :: Typeable t => t -> DsM Type
138
139
getTypeOf t = do
  tyEnv <- getValueEnv
140
  return (typeOf tyEnv t)
141
142
143
144

freshIdent :: String -> Int -> TypeScheme -> DsM Ident
freshIdent prefix arity ty = do
  m <- getModuleIdent
145
  x <- freeIdent
146
147
  modifyValueEnv $ bindFun m x arity ty
  return x
148
149
150
151
152
153
154
155
156
157
158
159
160
  where
  mkName pre n = mkIdent $ pre ++ show n
  -- TODO: This loop is only necessary because a combination of desugaring,
  -- simplification and a repeated desugaring, as currently needed for
  -- non-linear and functional patterns, may reintroduce identifiers removed
  -- during desugaring. The better solution would be to move the translation
  -- of non-linear and functional pattern into a separate module.
  freeIdent = do
    x <- mkName prefix <$> getNextId
    tyEnv <- getValueEnv
    case lookupValue x tyEnv of
      [] -> return x
      _  -> freeIdent
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

freshMonoTypeVar :: Typeable t => String -> t -> DsM Ident
freshMonoTypeVar prefix t = getTypeOf t >>= \ ty ->
  freshIdent prefix (arrowArity ty) (monoType ty)

-- The desugaring phase keeps only the type, function, and value
-- declarations of the module. In the current version, record declarations
-- are transformed into data types. The remaining type declarations are
-- not desugared and cannot occur in local declaration groups.
-- They are filtered out separately.

-- In order to use records within other modules, the export specification
-- of the module has to be extended with the selector and update functions of
-- all exported labels.

-- Actually, the transformation is slightly more general than necessary
-- as it allows value declarations at the top-level of a module.

179
desugar :: Bool -> [KnownExtension] -> ValueEnv -> TCEnv -> Module
180
        -> (Module, ValueEnv)
181
desugar dsFunPats xs tyEnv tcEnv (Module ps m es is ds)
182
183
  = (Module ps m es is ds', valueEnv s')
  where (ds', s') = S.runState (desugarModuleDecls ds)
184
                               (DesugarState m xs tcEnv tyEnv 1 dsFunPats)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

desugarModuleDecls :: [Decl] -> DsM [Decl]
desugarModuleDecls ds = do
  ds'  <- concatMapM dsRecordDecl ds -- convert record decls to data decls
  ds'' <- dsDeclGroup ds'
  return $ filter isTypeDecl ds' ++ ds''

-- Within a declaration group, all type signatures and evaluation
-- annotations are discarded. First, the patterns occurring in the left
-- hand sides are desugared. Due to lazy patterns, this may add further
-- declarations to the group that must be desugared as well.

dsDeclGroup :: [Decl] -> DsM [Decl]
dsDeclGroup ds = concatMapM dsDeclLhs valDecls >>= mapM dsDeclRhs
 where valDecls = filter isValueDecl ds

dsDeclLhs :: Decl -> DsM [Decl]
dsDeclLhs (PatternDecl p t rhs) = do
  (ds', t') <- dsPattern p [] t
  dss'      <- mapM dsDeclLhs ds'
  return $ PatternDecl p t' rhs : concat dss'
dsDeclLhs (ExternalDecl   p fs) = mapM (genForeignDecl p) fs
dsDeclLhs d                     = return [d]

genForeignDecl :: Position -> Ident -> DsM Decl
genForeignDecl p f = do
  m     <- getModuleIdent
212
  ty    <- fromType <$> (getTypeOf $ Variable $ qual m f)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  return $ ForeignDecl p CallConvPrimitive (Just $ idName f) f ty
  where qual m f'
         | hasGlobalScope f' = qualifyWith m f'
         | otherwise         = qualify f'

-- After desugaring its right hand side, each equation is eta-expanded
-- by adding as many variables as necessary to the argument list and
-- applying the right hand side to those variables (Note: eta-expansion
-- is disabled in the version for PAKCS).
-- Furthermore every occurrence of a record type within the type of a function
-- is simplified to the corresponding type constructor from the record
-- declaration. This is possible because currently records must not be empty
-- and a record label belongs to only one record declaration.

dsDeclRhs :: Decl -> DsM Decl
228
dsDeclRhs (FunctionDecl     p f eqs) = FunctionDecl p f <$> mapM dsEquation eqs
229
dsDeclRhs (PatternDecl      p t rhs) = PatternDecl  p t <$> dsRhs p id rhs
230
231
232
dsDeclRhs (ForeignDecl p cc ie f ty) = return $ ForeignDecl p cc ie' f ty
  where ie' = ie `mplus` Just (idName f)
dsDeclRhs fs@(FreeDecl          _ _) = return fs
233
234
235
236
dsDeclRhs _ = error "Desugar.dsDeclRhs: no pattern match"

dsEquation :: Equation -> DsM Equation
dsEquation (Equation p lhs rhs) = do
237
238
239
240
241
242
243
244
245
  funpats        <- desugarFunPats
  (ds1, cs, ts1) <- if funpats then do
                                  (     cs1, ts1) <- dsNonLinearity         ts
                                  (ds2, cs2, ts2) <- dsFunctionalPatterns p ts1
                                  return (ds2, cs2 ++ cs1, ts2)
                                else return ([], [], ts)
  (ds2    , ts2) <- mapAccumM (dsPattern p) [] ts1
  rhs'           <- dsRhs p (addConstraints cs) $ addDecls (ds1 ++ ds2) $ rhs
  return $ Equation p (FunLhs f ts2) rhs'
246
247
  where (f, ts) = flatLhs lhs

248
249
250
251
-- -----------------------------------------------------------------------------
-- Desugaring of non-linear patterns
-- -----------------------------------------------------------------------------

252
253
254
255
-- The desugaring traverses a pattern in depth-first order and collects
-- all variables. If it encounters a variable which has been previously
-- introduced, the second occurrence is changed to a fresh variable
-- and a new pair (newvar, oldvar) is saved to generate constraints later.
256
-- Non-linear patterns inside single functional patterns are not desugared,
257
258
259
260
261
262
263
264
265
266
267
268
-- as this special case is handled later.
dsNonLinearity :: [Pattern] -> DsM ([Expression], [Pattern])
dsNonLinearity ts = do
  ((_, cs), ts') <- mapAccumM dsNonLinear (Set.empty, []) ts
  return (reverse cs, ts')

type NonLinearEnv = (Set.Set Ident, [Expression])

dsNonLinear :: NonLinearEnv -> Pattern -> DsM (NonLinearEnv, Pattern)
dsNonLinear env l@(LiteralPattern        _) = return (env, l)
dsNonLinear env n@(NegativePattern     _ _) = return (env, n)
dsNonLinear env t@(VariablePattern       v)
269
  | isAnonId v         = return (env, t)
270
271
  | v `Set.member` vis = do
    v' <- freshMonoTypeVar "_#nonlinear" t
272
273
274
275
276
    return ((vis, mkStrictEquality v v' : eqs), VariablePattern v')
  | otherwise          = return ((Set.insert v vis, eqs), t)
  where (vis, eqs) = env
dsNonLinear env (ConstructorPattern   c ts) = second (ConstructorPattern c)
                                              <$> mapAccumM dsNonLinear env ts
277
278
279
280
dsNonLinear env (InfixPattern     t1 op t2) = do
  (env1, t1') <- dsNonLinear env  t1
  (env2, t2') <- dsNonLinear env1 t2
  return (env2, InfixPattern t1' op t2')
281
282
dsNonLinear env (ParenPattern            t) = second ParenPattern
                                              <$> dsNonLinear env t
283
284
dsNonLinear env (RecordPattern        c fs) =
  second (RecordPattern c) <$> mapAccumM (dsField dsNonLinear) env fs
285
286
287
288
dsNonLinear env (TuplePattern       pos ts) = second (TuplePattern pos)
                                              <$> mapAccumM dsNonLinear env ts
dsNonLinear env (ListPattern        pos ts) = second (ListPattern pos)
                                              <$> mapAccumM dsNonLinear env ts
289
dsNonLinear env (AsPattern             v t) = do
290
291
  (env1, VariablePattern v') <- dsNonLinear env  (VariablePattern v)
  (env2, t'                ) <- dsNonLinear env1 t
292
  return (env2, AsPattern v' t')
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
dsNonLinear env (LazyPattern           r t) = second (LazyPattern r)
                                          <$> dsNonLinear env t
dsNonLinear env fp@(FunctionPattern    _ _) = dsNonLinearFuncPat env fp
dsNonLinear env fp@(InfixFuncPattern _ _ _) = dsNonLinearFuncPat env fp

dsNonLinearFuncPat :: NonLinearEnv -> Pattern -> DsM (NonLinearEnv, Pattern)
dsNonLinearFuncPat (vis, eqs) fp = do
  let fpVars = bv fp
      vs     = filter (`Set.member` vis) fpVars
  vs' <- mapM (freshMonoTypeVar "_#nonlinear" . VariablePattern) vs
  let vis' = foldr Set.insert vis fpVars
      fp'  = substPat (zip vs vs') fp
  return ((vis', zipWith mkStrictEquality vs vs' ++ eqs), fp')

mkStrictEquality :: Ident -> Ident -> Expression
mkStrictEquality x y = mkVar x =:= mkVar y

substPat :: [(Ident, Ident)] -> Pattern -> Pattern
substPat _ l@(LiteralPattern        _) = l
substPat _ n@(NegativePattern     _ _) = n
substPat s (VariablePattern         v) = VariablePattern
                                       $ fromMaybe v (lookup v s)
substPat s (ConstructorPattern   c ps) = ConstructorPattern c
                                       $ map (substPat s) ps
substPat s (InfixPattern     p1 op p2) = InfixPattern (substPat s p1) op
                                                      (substPat s p2)
substPat s (ParenPattern            p) = ParenPattern (substPat s p)
320
321
substPat s (RecordPattern        c fs) = RecordPattern c (map substField fs)
  where substField (Field pos l pat) = Field pos l (substPat s pat)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
substPat s (TuplePattern       pos ps) = TuplePattern pos $ map (substPat s) ps
substPat s (ListPattern        pos ps) = ListPattern  pos $ map (substPat s) ps
substPat s (AsPattern             v p) = AsPattern    (fromMaybe v (lookup v s))
                                                      (substPat s p)
substPat s (LazyPattern           r p) = LazyPattern r (substPat s p)
substPat s (FunctionPattern      f ps) = FunctionPattern f $ map (substPat s) ps
substPat s (InfixFuncPattern p1 op p2) = InfixFuncPattern (substPat s p1) op
                                                          (substPat s p2)

-- -----------------------------------------------------------------------------
-- Desugaring of functional patterns
-- -----------------------------------------------------------------------------

-- Desugaring of functional patterns works in the following way:
--  1. The patterns are recursively traversed from left to right
--     to extract every functional pattern (note that functional patterns
--     can not be nested).
--     Each pattern is replaced by a fresh variable and a pair
--     (variable, functional pattern) is generated.
--  2. The variable-pattern pairs of the form @(v, p)@ are collected and
--     transformed into additional constraints of the form @p =:<= v@,
--     where the pattern @p@ is converted to the corresponding expression.
--     In addition, any variable occurring in @p@ is declared as a fresh
--     free variable.
--     Multiple constraints will later be combined using the @&>@-operator
--     such that the patterns are evaluated from left to right.

dsFunctionalPatterns :: Position -> [Pattern]
                     -> DsM ([Decl], [Expression], [Pattern])
dsFunctionalPatterns p ts = do
  -- extract functional patterns
  (bs, ts') <- mapAccumM elimFP [] ts
  -- generate declarations of free variables and constraints
  let (ds, cs) = genFPExpr p (bv ts') (reverse bs)
  -- return (declarations, constraints, desugared patterns)
  return (ds, cs, ts')

type LazyBinding = (Pattern, Ident)

elimFP :: [LazyBinding] -> Pattern -> DsM ([LazyBinding], Pattern)
elimFP bs p@(LiteralPattern        _) = return (bs, p)
elimFP bs p@(NegativePattern     _ _) = return (bs, p)
elimFP bs p@(VariablePattern       _) = return (bs, p)
elimFP bs (ConstructorPattern   c ts) = second (ConstructorPattern c)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (InfixPattern     t1 op t2) = do
  (bs1, t1') <- elimFP bs  t1
  (bs2, t2') <- elimFP bs1 t2
  return (bs2, InfixPattern t1' op t2')
elimFP bs (ParenPattern            t) = second ParenPattern <$> elimFP bs t
372
373
elimFP bs (RecordPattern        c fs) =
  second (RecordPattern c) <$> mapAccumM (dsField elimFP) bs fs
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
elimFP bs (TuplePattern       pos ts) = second (TuplePattern pos)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (ListPattern        pos ts) = second (ListPattern pos)
                                        <$> mapAccumM elimFP bs ts
elimFP bs (AsPattern             v t) = second (AsPattern v) <$> elimFP bs t
elimFP bs (LazyPattern           r t) = second (LazyPattern r) <$> elimFP bs t
elimFP bs p@(FunctionPattern     _ _) = do
 v <- freshMonoTypeVar "_#funpatt" p
 return ((p, v) : bs, VariablePattern v)
elimFP bs p@(InfixFuncPattern  _ _ _) = do
 v <- freshMonoTypeVar "_#funpatt" p
 return ((p, v) : bs, VariablePattern v)

genFPExpr :: Position -> [Ident] -> [LazyBinding] -> ([Decl], [Expression])
genFPExpr p vs bs
  | null bs   = ([]               , [])
  | null free = ([]               , cs)
  | otherwise = ([FreeDecl p free], cs)
  where
  mkLB (t, v) = let (t', es) = fp2Expr t
                in  (t' =:<= mkVar v) : es
  cs       = concatMap mkLB bs
  free     = nub $ filter (not . isAnonId) $ bv (map fst bs) \\ vs

fp2Expr :: Pattern -> (Expression, [Expression])
fp2Expr (LiteralPattern          l) = (Literal l, [])
fp2Expr (NegativePattern       _ l) = (Literal (negateLiteral l), [])
fp2Expr (VariablePattern         v) = (mkVar v, [])
fp2Expr (ConstructorPattern   c ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (apply (Constructor c) ts', concat ess)
fp2Expr (InfixPattern     t1 op t2) =
  let (t1', es1) = fp2Expr t1
      (t2', es2) = fp2Expr t2
  in  (InfixApply t1' (InfixConstr op) t2', es1 ++ es2)
fp2Expr (ParenPattern            t) = first Paren (fp2Expr t)
fp2Expr (TuplePattern         r ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (Tuple r ts', concat ess)
fp2Expr (ListPattern         rs ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (List rs ts', concat ess)
fp2Expr (FunctionPattern      f ts) =
  let (ts', ess) = unzip $ map fp2Expr ts
  in  (apply (Variable f) ts', concat ess)
fp2Expr (InfixFuncPattern t1 op t2) =
  let (t1', es1) = fp2Expr t1
      (t2', es2) = fp2Expr t2
  in  (InfixApply t1' (InfixOp op) t2', es1 ++ es2)
fp2Expr (AsPattern             v t) =
  let (t', es) = fp2Expr t
  in  (mkVar v, (t' =:<= mkVar v):es)
fp2Expr t                           = internalError $
  "Desugar.fp2Expr: Unexpected constructor term: " ++ show t

-- -----------------------------------------------------------------------------
-- Desugaring of remaining patterns
-- -----------------------------------------------------------------------------
432
433
434
435
436
437
438
439

-- The transformation of patterns is straight forward except for lazy
-- patterns. A lazy pattern '~t' is replaced by a fresh
-- variable 'v' and a new local declaration 't = v' in the
-- scope of the pattern. In addition, as-patterns 'v@t' where
-- 't' is a variable or an as-pattern are replaced by 't' in combination
-- with a local declaration for 'v'.

440
441
442
443
444
445
446
447
448
449
450
451
452
-- Record patterns are transformed into normal constructor patterns by
-- rearranging fields in the order of the record's declaration, adding
-- fresh variables in place of omitted fields, and discarding the field
-- labels.

-- Note: By rearranging fields here we loose the ability to comply
-- strictly with the Haskell 98 pattern matching semantics, which matches
-- fields of a record pattern in the order of their occurrence in the
-- pattern. However, keep in mind that Haskell matches alternatives from
-- top to bottom and arguments within an equation or alternative from
-- left to right, which is not the case in Curry except for rigid case
-- expressions.

453
dsPattern :: Position -> [Decl] -> Pattern -> DsM ([Decl], Pattern)
454
dsPattern _ ds v@(VariablePattern      _) = return (ds, v)
455
456
457
458
459
460
461
462
463
dsPattern p ds (LiteralPattern         l) = do
  dl <- dsLiteral l
  case dl of
    Left  l'     -> return (ds, LiteralPattern l')
    Right (rs,ls) -> dsPattern p ds $ ListPattern rs $ map LiteralPattern ls
dsPattern p ds (NegativePattern      _ l) =
  dsPattern p ds (LiteralPattern (negateLiteral l))
dsPattern p ds (ConstructorPattern c [t]) = do
    tyEnv <- getValueEnv
464
    (if isNewtypeConstr tyEnv c then id else second (constrPat c)) <$>
465
466
          (dsPattern p ds t)
  where constrPat c' t' = ConstructorPattern c' [t']
467
dsPattern p ds (ConstructorPattern  c ts) =
468
  second (ConstructorPattern c) <$> mapAccumM (dsPattern p) ds ts
469
dsPattern p ds (InfixPattern    t1 op t2) =
470
  dsPattern p ds (ConstructorPattern op [t1,t2])
471
472
473
dsPattern p ds (ParenPattern           t) = dsPattern p ds t
dsPattern p ds (RecordPattern      c  fs) = do
  tyEnv <- getValueEnv
474
475
  let ls = map (qualifyLike c) $ fst $ conType c tyEnv
      ts = map (dsLabel (VariablePattern anonId) (map field2Tuple fs)) ls
476
477
  dsPattern p ds (ConstructorPattern c ts)
dsPattern p ds (TuplePattern      pos ts) =
478
479
480
  dsPattern p ds (ConstructorPattern (tupleConstr ts) ts)
  where tupleConstr ts' = addRef pos $
                         if null ts' then qUnitId else qTupleId (length ts')
481
dsPattern p ds (ListPattern       pos ts) =
482
  second (dsList pos cons nil) <$> mapAccumM (dsPattern p) ds ts
483
484
  where nil  p' = ConstructorPattern (addRef p' qNilId) []
        cons p' t ts' = ConstructorPattern (addRef p' qConsId) [t,ts']
485
486
487
dsPattern p ds (AsPattern            v t) = dsAs p v <$> dsPattern p ds t
dsPattern p ds (LazyPattern          r t) = dsLazy r p ds t
dsPattern p ds (FunctionPattern     f ts) =
488
  second (FunctionPattern f) <$> mapAccumM (dsPattern p) ds ts
489
490
491
492
493
dsPattern p ds (InfixFuncPattern t1 f t2) =
  dsPattern p ds (FunctionPattern f [t1,t2])

dsLiteral :: Literal -> DsM (Either Literal ([SrcRef], [Literal]))
dsLiteral c@(Char             _ _) = return $ Left c
494
495
dsLiteral (Int                v i) = do
  tyEnv <- getValueEnv
496
497
498
  return (Left (fixType tyEnv))
  where fixType tyEnv'
          | typeOf tyEnv' v == floatType =
499
              Float (srcRefOf $ idPosition v) (fromIntegral i)
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
          | otherwise = Int v i
dsLiteral f@(Float            _ _) = return $ Left f
dsLiteral (String (SrcRef [i]) cs) = return $ Right
  (consRefs i cs, zipWith (Char . SrcRef . (:[])) [i, i + 2 ..] cs)
  where consRefs r []     = [SrcRef [r]]
        consRefs r (_:xs) = let r' = r + 2
                            in  r' `seq` (SrcRef [r'] : consRefs r' xs)
dsLiteral (String is _) = internalError $
  "Desugar.dsLiteral: " ++ "wrong source ref for string "  ++ show is

dsList :: [SrcRef] -> (SrcRef -> b -> b -> b) -> (SrcRef -> b) -> [b] -> b
dsList pos cons nil xs = snd (foldr cons' nil' xs)
  where rNil : rCs = reverse pos
        nil'                 = (rCs , nil rNil)
        cons' t (rC:rCs',ts) = (rCs', cons rC t ts)
        cons' _ ([],_) = error "Desugar.dsList.cons': empty list"

dsAs :: Position -> Ident -> ([Decl], Pattern) -> ([Decl], Pattern)
dsAs p v (ds, t) = case t of
  VariablePattern v' -> (varDecl p v (mkVar v') : ds, t)
  AsPattern     v' _ -> (varDecl p v (mkVar v') : ds, t)
  _                  -> (ds, AsPattern v t)

dsLazy :: SrcRef -> Position -> [Decl] -> Pattern -> DsM ([Decl], Pattern)
dsLazy pos p ds t = case t of
  VariablePattern   _ -> return (ds, t)
  ParenPattern     t' -> dsLazy pos p ds t'
527
  AsPattern      v t' -> dsAs p v <$> dsLazy pos p ds t'
528
529
  LazyPattern pos' t' -> dsLazy pos' p ds t'
  _                   -> do
530
   v' <- addPositionIdent (AST pos) <$> freshMonoTypeVar "_#lazy" t
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
   return (patDecl p { astRef = pos } t (mkVar v') : ds, VariablePattern v')

negateLiteral :: Literal -> Literal
negateLiteral (Int    v i) = Int   v  (-i)
negateLiteral (Float p' f) = Float p' (-f)
negateLiteral _            = internalError "Desugar.negateLiteral"

-- A list of boolean guards is expanded into a nested if-then-else
-- expression, whereas a constraint guard is replaced by a case
-- expression. Note that if the guard type is 'Success' only a
-- single guard is allowed for each equation (This change was
-- introduced in version 0.8 of the Curry report.). We check for the
-- type 'Bool' of the guard because the guard's type defaults to
-- 'Success' if it is not restricted by the guard expression.

dsRhs :: Position -> (Expression -> Expression) -> Rhs -> DsM Rhs
dsRhs p f rhs = do
  e' <- expandRhs prelFailed f rhs >>= dsExpr p
  return (SimpleRhs p e' [])

expandRhs :: Expression -> (Expression -> Expression) -> Rhs -> DsM Expression
expandRhs _  f (SimpleRhs _ e ds) = return $ Let ds (f e)
553
expandRhs e0 f (GuardedRhs es ds) = (Let ds . f) <$> expandGuards e0 es
554
555
556
557

expandGuards :: Expression -> [CondExpr] -> DsM Expression
expandGuards e0 es = do
  tyEnv <- getValueEnv
558
  return $ if booleanGuards tyEnv es
559
560
561
562
563
564
565
566
567
              then foldr mkIfThenElse e0 es
              else mkCond es
  where mkIfThenElse (CondExpr p g e) = IfThenElse (srcRefOf p) g e
        mkCond       [CondExpr _ g e] = apply prelCond [g, e]
        mkCond _ = error "Desugar.expandGuards.mkCond: non-unary list"

addConstraints :: [Expression] -> Expression -> Expression
addConstraints cs e
  | null cs   = e
568
  | otherwise = apply prelCond [foldr1 (&>) cs, e]
569

570
571
572
573
booleanGuards :: ValueEnv -> [CondExpr] -> Bool
booleanGuards _     []                    = False
booleanGuards tyEnv (CondExpr _ g _ : es) =
  not (null es) || typeOf tyEnv g == boolType
574

575
576
-- Record construction expressions are transformed into normal
-- constructor applications by rearranging fields in the order of the
577
-- record's declaration, passing `Prelude.unknown` in place of
578
579
580
581
582
583
584
585
586
587
-- omitted fields, and discarding the field labels. The transformation of
-- record update expressions is a bit more involved as we must match the
-- updated expression with all valid constructors of the expression's
-- type. As stipulated by the Haskell 98 Report, a record update
-- expression @e { l_1 = e_1, ..., l_k = e_k }@ succeeds only if @e@ reduces to
-- a value @C e'_1 ... e'_n@ such that @C@'s declaration contains all
-- field labels @l_1,...,l_k@. In contrast to Haskell we do not report
-- an error if this is not the case but rather fail only the current
-- solution.

588
dsExpr :: Position -> Expression -> DsM Expression
589
dsExpr p (Literal         l) =
590
591
592
  dsLiteral l >>=
  either (return . Literal) (\ (pos, ls) -> dsExpr p $ List pos $ map Literal ls)
dsExpr _ var@(Variable v)
593
594
595
596
597
598
599
  | isAnonId (unqualify v)   = return prelUnknown
  | otherwise                = return var
dsExpr _ c@(Constructor   _) = return c
dsExpr p (Paren           e) = dsExpr p e
dsExpr p (Typed        e ty) = Typed <$> dsExpr p e <*> dsTypeExpr ty
dsExpr p (Record       c fs) = do
  tyEnv <- getValueEnv
600
  let ls = map (qualifyLike c) $ fst $ conType c tyEnv
601
      es = map (dsLabel prelUnknown (map field2Tuple fs)) ls
602
603
604
605
606
  dsExpr p $ apply (Constructor c) es
dsExpr p (RecordUpdate e fs) = do
  tcEnv <- getTyConsEnv
  ty    <- getTypeOf e
  let (TypeConstructor tc _) = arrowBase ty
607
608
  alts  <- mapM (updateAlt tc) (constructors tc tcEnv)
  dsExpr p $ Case (srcRefOf p) Flex e (map (uncurry (caseAlt p)) (concat alts))
609
610
  where
    ls = map fieldLabel fs
611
    updateAlt _   (DataConstr          _ _ _)          = return []
612
    updateAlt tc' (RecordConstr c _ labels tys)
613
      | all (`elem` (map (qualifyLike tc') labels)) ls = do
614
615
616
          vs <- mapM (freshIdent "_#rec" 0 . polyType) tys
          let qc  = qualifyLike tc' c
              qls = map (qualifyLike tc') labels
617
618
              es  = zipWith (\v l -> dsLabel (mkVar v) (map field2Tuple fs) l)
                      vs qls
619
          return [(constrPat qc vs, apply (Constructor qc) es)]
620
      | otherwise                             = return []
621
622
    constrPat qc' vs' = ConstructorPattern qc' (map VariablePattern vs')
dsExpr p (Tuple      pos es) = apply (Constructor $ tupleConstr es)
623
624
625
                             <$> mapM (dsExpr p) es
  where tupleConstr es1 = addRef pos
                        $ if null es1 then qUnitId else qTupleId (length es1)
626
dsExpr p (List       pos es) = dsList pos cons nil <$> mapM (dsExpr p) es
627
628
  where nil p'  = Constructor (addRef p' qNilId)
        cons p' = Apply . Apply (Constructor $ addRef p' qConsId)
629
630
631
632
633
634
635
636
637
638
dsExpr p (ListCompr    r e []    ) = dsExpr p (List [r,r] [e])
dsExpr p (ListCompr    r e (q:qs)) = dsQual p q (ListCompr r e qs)
dsExpr p (EnumFrom              e) = Apply prelEnumFrom <$> dsExpr p e
dsExpr p (EnumFromThen      e1 e2) = apply prelEnumFromThen
                                     <$> mapM (dsExpr p) [e1, e2]
dsExpr p (EnumFromTo        e1 e2) = apply prelEnumFromTo
                                     <$> mapM (dsExpr p) [e1, e2]
dsExpr p (EnumFromThenTo e1 e2 e3) = apply prelEnumFromThenTo
                                     <$> mapM (dsExpr p) [e1, e2, e3]
dsExpr p (UnaryMinus         op e) = do
639
640
  ty <- getTypeOf e
  e' <- dsExpr p e
641
642
643
644
  negativeLitsEnabled <- checkNegativeLitsExtension
  return $ case e' of
    Literal l | negativeLitsEnabled -> Literal $ negateLiteral l
    _                               -> Apply (unaryMinus op ty) e'
645
646
647
648
649
650
651
  where
  unaryMinus op1 ty'
    | op1 ==  minusId = if ty' == floatType then prelNegateFloat else prelNegate
    | op1 == fminusId = prelNegateFloat
    | otherwise       = internalError "Desugar.unaryMinus"
dsExpr p (Apply (Constructor c) e) = do
  tyEnv <- getValueEnv
652
653
654
  (if isNewtypeConstr tyEnv c then id else (Apply (Constructor c))) <$>
    dsExpr p e
dsExpr p (Apply e1 e2) = Apply <$> dsExpr p e1 <*> dsExpr p e2
655
656
657
658
659
dsExpr p (InfixApply e1 op e2) = do
  op' <- dsExpr p (infixOp op)
  e1' <- dsExpr p e1
  e2' <- dsExpr p e2
  return $ apply op' [e1', e2']
660
dsExpr p (LeftSection  e op) = Apply <$> dsExpr p (infixOp op) <*> dsExpr p e
661
662
dsExpr p (RightSection op e) = do
  op' <- dsExpr p (infixOp op)
663
  e'  <- dsExpr p e
664
665
666
667
668
669
670
  return $ apply prelFlip [op', e']
dsExpr p expr@(Lambda r ts e) = do
  ty <- getTypeOf expr
  f  <- freshIdent "_#lambda" (length ts) (polyType ty)
  dsExpr p $ Let [funDecl (AST r) f ts e] $ mkVar f
dsExpr p (Let ds e) = do
  ds' <- dsDeclGroup ds
671
  e'  <- dsExpr p e
672
  return (if null ds' then e' else Let ds' e')
673
dsExpr p (Do sts e) = dsExpr p (foldr desugarStmt e sts)
674
675
676
677
678
679
680
  where desugarStmt (StmtExpr r e1) e' = apply (prelBind_ r) [e1,e']
        desugarStmt (StmtBind r t e1) e' = apply (prelBind r) [e1,Lambda r [t] e']
        desugarStmt (StmtDecl ds) e' = Let ds e'
dsExpr p (IfThenElse r e1 e2 e3) = do
  e1' <- dsExpr p e1
  e2' <- dsExpr p e2
  e3' <- dsExpr p e3
681
  return $ Case r Rigid e1' [caseAlt p truePat e2', caseAlt p falsePat e3']
682
683
684
685
686
687
688
689
690
691
692
693
694
dsExpr p (Case r ct e alts)
  | null alts = return prelFailed
  | otherwise = do
    m  <- getModuleIdent
    e' <- dsExpr p e
    v  <- freshMonoTypeVar "_#case" e
    alts'  <- mapM dsAltLhs alts
    alts'' <- mapM (expandAlt v ct) (init (tails alts')) >>= mapM dsAltRhs
    return (mkCase m v e' alts'')
  where
  mkCase m1 v e1 alts1
    | v `elem` qfv m1 alts1 = Let [varDecl p v e1] (Case r ct (mkVar v) alts1)
    | otherwise             = Case r ct e1 alts1
695

696
dsLabel :: a -> [(QualIdent, a)] -> QualIdent -> a
697
698
699
700
701
dsLabel def fs l = fromMaybe def (lookup l fs)

dsField :: (a -> b -> DsM (a, b)) -> a -> Field b -> DsM (a, Field b)
dsField ds z (Field p l x) = do (z', x') <- ds z x
                                return (z', Field p l x')
702

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
dsTypeExpr :: TypeExpr -> DsM TypeExpr
dsTypeExpr ty = do
  tcEnv <- getTyConsEnv
  let expType = expandType tcEnv (toType [] ty)
  return $ fromType expType

expandType :: TCEnv -> Type -> Type
expandType tcEnv (TypeConstructor tc tys) = case qualLookupTC tc tcEnv of
  [DataType     tc' _  _] -> TypeConstructor tc' tys'
  [RenamingType tc' _  _] -> TypeConstructor tc' tys'
  [AliasType    _   _ ty] -> expandAliasType tys' ty
  _ -> internalError $ "Desugar.expandType " ++ show tc
  where tys' = map (expandType tcEnv) tys
expandType _     tv@(TypeVariable      _) = tv
expandType _     tc@(TypeConstrained _ _) = tc
expandType tcEnv (TypeArrow      ty1 ty2) =
  TypeArrow (expandType tcEnv ty1) (expandType tcEnv ty2)
expandType _     ts@(TypeSkolem        _) = ts

722
723
724
725
726
727
728
729
730
731
732
733
734
735
-- If an alternative in a case expression has boolean guards and all of
-- these guards return 'False', the enclosing case expression does
-- not fail but continues to match the remaining alternatives against the
-- selector expression. In order to implement this semantics, which is
-- compatible with Haskell, we expand an alternative with boolean guards
-- such that it evaluates a case expression with the remaining cases that
-- are compatible with the matched pattern when the guards fail.

dsAltLhs :: Alt -> DsM Alt
dsAltLhs (Alt p t rhs) = do
  (ds', t') <- dsPattern p [] t
  return $ Alt p t' (addDecls ds' rhs)

dsAltRhs :: Alt -> DsM Alt
736
dsAltRhs (Alt p t rhs) = Alt p t <$> dsRhs p id rhs
737
738
739

expandAlt :: Ident -> CaseType -> [Alt] -> DsM Alt
expandAlt _ _  []                   = error "Desugar.expandAlt: empty list"
740
expandAlt v ct (Alt p t rhs : alts) = caseAlt p t <$> expandRhs e0 id rhs
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
  where
  e0 | ct == Flex = prelFailed
     | otherwise  = Case (srcRefOf p) ct (mkVar v)
                         (filter (isCompatible t . altPattern) alts)
  altPattern (Alt _ t1 _) = t1

isCompatible :: Pattern -> Pattern -> Bool
isCompatible (VariablePattern _) _                   = True
isCompatible _                   (VariablePattern _) = True
isCompatible (AsPattern    _ t1) t2                  = isCompatible t1 t2
isCompatible t1                  (AsPattern    _ t2) = isCompatible t1 t2
isCompatible (ConstructorPattern c1 ts1) (ConstructorPattern c2 ts2)
  = and ((c1 == c2) : zipWith isCompatible ts1 ts2)
isCompatible (LiteralPattern         l1) (LiteralPattern         l2)
  = canon l1 == canon l2
  where canon (Int _ i) = Int anonId i
        canon l         = l
isCompatible _                    _                  = False

760
-- -----------------------------------------------------------------------------
761
-- Desugaring of Records
762
-- -----------------------------------------------------------------------------
763

764
765
766
767
768
-- As an extension to the Curry language the compiler supports Haskell's
-- record syntax, which introduces field labels for data and renaming
-- types. Field labels can be used in constructor declarations, patterns,
-- and expressions. For further convenience, an implicit selector
-- function is introduced for each field label.
769

770
771
-- Generate selection functions for record labels and replace record
-- constructor declarations by normal constructor declarations
772
dsRecordDecl :: Decl -> DsM [Decl]
773
774
775
776
777
778
779
780
781
782
783
784
dsRecordDecl (DataDecl p tc tvs cs) = do
  m  <- getModuleIdent
  let qcs = map (qualifyWith m . constrId) cs
  selFuns <- mapM (genSelectFunc p qcs) labels
  return $ DataDecl p tc tvs (map unlabelConstr cs) : selFuns
  where
    labels = nub $ concatMap recordLabels cs
dsRecordDecl (NewtypeDecl p tc tvs nc) = do
  m <- getModuleIdent
  let qc = qualifyWith m (nconstrId nc)
  selFun <- mapM (genSelectFunc p [qc]) (nrecordLabels nc)
  return $ NewtypeDecl p tc tvs (unlabelNewConstr nc) : selFun
785
786
dsRecordDecl d = return [d]

787
788
789
-- Generate selection function for a record label
genSelectFunc :: Position -> [QualIdent] -> Ident -> DsM Decl
genSelectFunc p qcs l = do
790
  eqs <- concat <$> mapM (selectorEqn l) qcs
791
  return $ FunctionDecl p l [funEqn l [pat] e | (pat, e) <- eqs]
792
  where
793
    funEqn f ps e = Equation p (FunLhs f ps) (SimpleRhs p e [])
794

795
-- Generate pattern and rhs for selection function
796
797
798
selectorEqn :: Ident -> QualIdent -> DsM [(Pattern, Expression)]
selectorEqn l qc = do
  tyEnv <- getValueEnv
799
800
  let (ls, ty) = conType qc tyEnv
      (tys, _) = arrowUnapply (instType ty)
801
  case elemIndex l ls of
802
    Just n  -> do vs <- mapM (freshIdent "_#rec" 0 . polyType) tys
803
804
805
                  let pvs = map VariablePattern vs
                      v   = qualify (vs !! n)
                  return [(ConstructorPattern qc pvs, Variable v)]
806
807
808
809
810
811
812
813
814
815
816
    Nothing -> return []

-- Transform record constructor declarations into normal declarations
unlabelConstr :: ConstrDecl -> ConstrDecl
unlabelConstr (RecordDecl p evs c fs) = ConstrDecl p evs c tys
  where tys = [ty | FieldDecl _ ls ty <- fs, _ <- ls]
unlabelConstr c                       = c

unlabelNewConstr :: NewConstrDecl -> NewConstrDecl
unlabelNewConstr (NewRecordDecl p evs nc (_, ty)) = NewConstrDecl p evs nc ty
unlabelNewConstr c                                = c
817

818
819
820
821
-- -----------------------------------------------------------------------------
-- Desugaring of List Comprehension
-- -----------------------------------------------------------------------------

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
-- In general, a list comprehension of the form
-- '[e | t <- l, qs]'
-- is transformed into an expression 'foldr f [] l' where 'f'
-- is a new function defined as
--
--     f x xs =
--       case x of
--           t -> [e | qs] ++ xs
--           _ -> xs
--
-- Note that this translation evaluates the elements of 'l' rigidly,
-- whereas the translation given in the Curry report is flexible.
-- However, it does not seem very useful to have the comprehension
-- generate instances of 't' which do not contribute to the list.

-- Actually, we generate slightly better code in a few special cases.
-- When 't' is a plain variable, the 'case' expression degenerates
-- into a let-binding and the auxiliary function thus becomes an alias
-- for '(++)'. Instead of 'foldr (++)' we use the
-- equivalent prelude function 'concatMap'. In addition, if the
-- remaining list comprehension in the body of the auxiliary function has
-- no qualifiers -- i.e., if it is equivalent to '[e]' -- we
-- avoid the construction of the singleton list by calling '(:)'
-- instead of '(++)' and 'map' in place of 'concatMap', respectively.

dsQual :: Position -> Statement -> Expression -> DsM Expression
dsQual p (StmtExpr   r b) e = dsExpr p (IfThenElse r b e (List [r] []))
dsQual p (StmtDecl    ds) e = dsExpr p (Let ds e)
dsQual p (StmtBind r t l) e
  | isVarPattern t = dsExpr p (qualExpr t e l)
  | otherwise      = do
853
854
    v   <- addRefId r <$> freshMonoTypeVar "_#var" t
    l'  <- addRefId r <$> freshMonoTypeVar "_#var" e
855
856
    dsExpr p (apply (prelFoldr r) [foldFunct v l' e, List [r] [], l])
  where
857
858
859
860
  qualExpr v (ListCompr _ e1 []) l1 = apply (prelMap       r)
                                      [Lambda r [v] e1, l1]
  qualExpr v e1                  l1 = apply (prelConcatMap r)
                                      [Lambda r [v] e1, l1]
861
862
863
864
865
866
  foldFunct v l1 e1
    = Lambda r (map VariablePattern [v,l1])
       (Case r Rigid (mkVar v)
          [ caseAlt p t (append e1 (mkVar l1))
          , caseAlt p (VariablePattern v) (mkVar l1)])

867
868
869
  append (ListCompr _ e1 []) l1 = apply prelCons       [e1, l1]
  append e1                  l1 = apply (prelAppend r) [e1, l1]
  prelCons                      = Constructor $ addRef r $ qConsId
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

-- ---------------------------------------------------------------------------
-- Prelude entities
-- ---------------------------------------------------------------------------

prelBind :: SrcRef -> Expression
prelBind = prel ">>="

prelBind_ :: SrcRef -> Expression
prelBind_ = prel ">>"

prelFlip :: Expression
prelFlip = Variable $ preludeIdent "flip"

prelEnumFrom :: Expression
prelEnumFrom = Variable $ preludeIdent "enumFrom"

prelEnumFromTo :: Expression
prelEnumFromTo = Variable $ preludeIdent "enumFromTo"

prelEnumFromThen :: Expression
prelEnumFromThen = Variable $ preludeIdent "enumFromThen"

prelEnumFromThenTo :: Expression
prelEnumFromThenTo = Variable $ preludeIdent "enumFromThenTo"

prelFailed :: Expression
prelFailed = Variable $ preludeIdent "failed"

prelUnknown :: Expression
prelUnknown = Variable $ preludeIdent "unknown"

prelMap :: SrcRef -> Expression
prelMap r = Variable $ addRef r $ preludeIdent "map"

prelFoldr :: SrcRef -> Expression
prelFoldr = prel "foldr"

prelAppend :: SrcRef -> Expression
prelAppend = prel "++"

prelConcatMap :: SrcRef -> Expression
prelConcatMap = prel "concatMap"

prelNegate :: Expression
prelNegate = Variable $ preludeIdent "negate"

prelNegateFloat :: Expression
prelNegateFloat = Variable $ preludeIdent "negateFloat"

prelCond :: Expression
prelCond = Variable $ preludeIdent "cond"

(=:<=) :: Expression -> Expression -> Expression
e1 =:<= e2 = apply prelFPEq [e1, e2]

prelFPEq :: Expression
prelFPEq = Variable $ preludeIdent "=:<="

(=:=) :: Expression -> Expression -> Expression
e1 =:= e2 = apply prelSEq [e1, e2]

prelSEq :: Expression
prelSEq = Variable $ preludeIdent "=:="

935
936
(&>) :: Expression -> Expression -> Expression
e1 &> e2 = apply prelCond [e1, e2]
937
938
939
940

prel :: String -> SrcRef -> Expression
prel s r = Variable $ addRef r $ preludeIdent s

941
942
truePat :: Pattern
truePat = ConstructorPattern qTrueId []
943

944
945
falsePat :: Pattern
falsePat = ConstructorPattern qFalseId []
946
947
948
949
950
951
952
953
954
955

preludeIdent :: String -> QualIdent
preludeIdent = qualifyWith preludeMIdent . mkIdent

-- ---------------------------------------------------------------------------
-- Auxiliary definitions
-- ---------------------------------------------------------------------------

isNewtypeConstr :: ValueEnv -> QualIdent -> Bool
isNewtypeConstr tyEnv c = case qualLookupValue c tyEnv of
956
957
  [NewtypeConstructor _ _ _] -> True
  [DataConstructor  _ _ _ _] -> False
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
  x -> internalError $ "Transformations.Desugar.isNewtypeConstr: "
                        ++ show c ++ " is " ++ show x

isVarPattern :: Pattern -> Bool
isVarPattern (VariablePattern _) = True
isVarPattern (ParenPattern    t) = isVarPattern t
isVarPattern (AsPattern     _ t) = isVarPattern t
isVarPattern (LazyPattern   _ _) = True
isVarPattern _                   = False

funDecl :: Position -> Ident -> [Pattern] -> Expression -> Decl
funDecl p f ts e = FunctionDecl p f
  [Equation p (FunLhs f ts) (SimpleRhs p e [])]

patDecl :: Position -> Pattern -> Expression -> Decl
patDecl p t e = PatternDecl p t (SimpleRhs p e [])

varDecl :: Position -> Ident -> Expression -> Decl
varDecl p = patDecl p . VariablePattern

addDecls :: [Decl] -> Rhs -> Rhs
addDecls ds (SimpleRhs p e ds') = SimpleRhs p e (ds ++ ds')
addDecls ds (GuardedRhs es ds') = GuardedRhs es (ds ++ ds')

caseAlt :: Position -> Pattern -> Expression -> Alt
caseAlt p t e = Alt p t (SimpleRhs p e [])

apply :: Expression -> [Expression] -> Expression
apply = foldl Apply

mkVar :: Ident -> Expression
mkVar = Variable . qualify
990
991
992
993
994
995
996
997

-- The function 'instType' instantiates the universally quantified
-- type variables of a type scheme with fresh type variables. Since this
-- function is used only to instantiate the closed types of record
-- constructors (Recall that no existentially quantified type
-- variables are allowed for records), the compiler can reuse the same
-- monomorphic type variables for every instantiated type.

998
999
1000
1001
1002
1003
instType :: ExistTypeScheme -> Type
instType (ForAllExist _ _ ty) = inst ty
  where inst (TypeConstructor tc tys) = TypeConstructor tc (map inst tys)
        inst (TypeVariable        tv) = TypeVariable (-1 - tv)
        inst (TypeArrow      ty1 ty2) = TypeArrow (inst ty1) (inst ty2)
        inst ty'                      = ty'
1004
1005

constructors :: QualIdent -> TCEnv -> [DataConstr]
1006
constructors c tcEnv = case qualLookupTC c tcEnv of
1007
  [DataType     _ _ cs] -> cs
1008
  [RenamingType _ _ nc] -> [nc]
1009
1010
  _                     -> internalError $
    "Transformations.Desugar.constructors: " ++ show c